
Degree Project in Embedded Systems

Second cycle, 30 credits

FPGA accelerated packet capture
with eBPF
Performance considerations of using SoC FPGA
accelerators for packet capturing.

JAKUB DUCHNIEWICZ

Stockholm, Sweden, 2022

FPGA accelerated packet capture
with eBPF

Performance considerations of using SoC FPGA
accelerators for packet capturing.

JAKUB DUCHNIEWICZ

Master’s Programme, ICT Innovation, 120 credits
Date: December 9, 2022

Supervisors: Sebastian Pisklak, Hasini Thilanka Thilakasiri Laddusinghe Badu
Examiner: Matthias Becker

School of Electrical Engineering and Computer Science
Host company: Tietoevry
Swedish title: FPGA-accelererad paketfångst med eBPF
Swedish subtitle: Prestandaöverväganden vid användning av SoC FPGA
acceleratorer för paketering.

© 2022 Jakub Duchniewicz

Abstract | i

Abstract
With the rise of the Internet of Things and the proliferation of embedded
devices equipped with an accelerator arose a need for efficient resource
utilization. Hardware acceleration is a complex topic that requires specialized
domain knowledge about the platform and different trade-offs that have to be
made, especially in the area of power consumption. Efficient work offloading
strives to reduce or at least maintain the total power consumption of the
system. Offloading packet capturing is usually done in more powerful devices,
hence scarce research is present concerning network packet acceleration in
embedded devices.

The thesis focuses on accelerating networking packets utilizing a Field
Programmable Gate Array in an embedded Linux System. The solution is
based on a custom Linux distribution assembled using the Buildroot tool,
specially configured and patched Linux kernel, uboot bootloader, and the
programmable logic for packet acceleration. The system is evaluated on
a De0-Nano System on Chip development board through modifications to
burst lengths, packet sizes, and programmable logic clock frequency. Metrics
include packet capturing time, time per packet, and consumed power. Finally,
the results are contrasted with baseline embedded Linux packet processing by
inspection of a packet’s path through the kernel.

Collected results provide a deeper understanding of the packet acceleration
problem in embedded devices and the resultant system gives a solid starting
point for possible extensions such as packet filtering. Key findings include
an improvement in packet processing speed as the clock frequency and burst
length are increased while maintaining power consumption. Additionally,
the solution performs better when the packet sizes are above 64 bytes as the
overhead of additional logic necessary for their processing is compensated.
The project is also found to be significantly faster than regular in kernel
processing with the caveat of providing just packet capturing whereas Linux
contains a full network stack.

Keywords
Field Programmable Gate Array, Acceleration, Networking, Embedded Linux

ii | Abstract

Sammanfattning | iii

Sammanfattning
I och med uppkomsten av sakernas internet och spridningen av inbyggda
enheter som är utrustade med en accelerator har det uppstått ett behov av
effektivt resursutnyttjande. Hårdvaruacceleration är ett komplext ämne som
kräver specialiserad domänkunskap om plattformen och olika avvägningar
som måste göras, särskilt när det gäller energiförbrukning. Effektiv arbets-
avlastning strävar efter att minska eller åtminstone bibehålla systemets totala
energiförbrukning. Avlastning av paketering sker vanligtvis i kraftfullare
enheter, och därför finns det knappt någon forskning om nätverksacceleration
av paket i inbyggda enheter.

Avhandlingen är inriktad på att påskynda nätverkspaket med hjälp av
en Field Programmable Gate Array i ett inbäddat Linuxsystem. Lösningen
bygger på en anpassad Linuxdistribution som sammanställts med hjälp
av verktyget Buildroot, en särskilt konfigurerad och patchad Linuxkärna,
uboot bootloader och den programmerbara logiken för paketacceleration.
Systemet utvärderas på ett De0-Nano System on Chip-utvecklingskort genom
ändringar av burstlängder, paketstorlekar och den programmerbara logikens
klockfrekvens. Metrikerna omfattar tid för paketering, tid per paket och
förbrukad effekt. Slutligen jämförs resultaten med grundläggande inbäddad
Linux-paketbehandling genom inspektion av paketens väg genom kärnan.

De samlade resultaten ger en djupare förståelse för problemet med
paketacceleration i inbyggda enheter och det resulterande systemet ger en solid
utgångspunkt för möjliga utvidgningar, t.ex. paketfiltrering. Bland de vikti-
gaste resultaten kan nämnas en förbättring av hastigheten i paketbehandlingen
när klockfrekvensen och burstlängden ökas samtidigt som strömförbrukningen
bibehålls. Dessutom fungerar lösningen bättre när paketstorleken är större
än 64 bytes eftersom den extra logik som krävs för att behandla paketen
kompenseras. Projektet har också visat sig vara betydligt snabbare än
vanlig kärnbearbetning, med den reservationen att det bara tillhandahåller
paketupptagning, medan Linux innehåller en fullständig nätverksstack.

Nyckelord
Field Programmable Gate Array, Acceleration, Nätverksarbete, Inbyggd Linux

iv | Sammanfattning

Streszczenie | v

Streszczenie
Rozwój Internetu Rzeczy i rosnąca popularność systemów wbudowanych
posiadających wbudowany akcelerator sprzętowy sprawiły, że wzrosła
potrzeba na ich efektywne wykorzytanie. Akceleracja sprzętowa jest dziedziną
nauki, która wymaga specjalistycznej wiedzy na temat platformy na której
ma operować oraz wymaga znajomości potencjalnych komplikacji które
się z nią wiążą. Efektywna akceleracja ma na celu redukcję zużycia
energii, a przynajmnniej jej utrzymanie na dotychczasowym poziomie.
Tematyka ta jest dość uboga pod kątem dostępnej literatury, gdyż zazwyczaj
akceleratory stosowane do sieciowych rozwiązań są używane w rozwiązaniach
serwerowych gdzie występują innego rodzaju problemy.

W pracy wykorzystany jest akcelerator Field Programmable Gate Array
który jest częścią płytki deweloperskiej De0-Nano System on Chip, gdzie
działa współpracując z wbudowanym systemem Linux, do którego przygo-
towania wykorzystano narzędzie Buildroot. Na końcowe rozwiązanie ponadto
składa się połatane jądro Linuxa, bootloader uboot oraz programowalna logika
realizująca przechwytywanie pakietów sieciowych. Rozwiązanie poddane jest
testom, w których parametry odpowiedzialne za długość transakcji typu burst,
rozmiaru pakietu oraz częstotliwości zegara są poddawane modyfikacjom.
Wyniki są przedstawione za pomocą czasu przetwarzania pakietu, czasu per
pakiet oraz zużycia mocy. Do oceny efektywności rozwiązania posłużyło
także porównanie z czasem procesowania pakietu w niezmodyfikowanym
systemie Linux

Na podstawie eksperymentów dokonanych w pracy wysunięte są na-
stępujące wnioski: wraz ze wzrostem częstotliwości zegara oraz długości
transakcji burst, czas procesowania pakietów maleje a zużycie prądu pozostaje
na dotychczasowym poziomie. Pakiety o rozmiarze przekraczającym 64
bajty są procesowane wydajniej w dostarczonym rozwiązaniu poprzez
kompensację dodatkowego nakładu czasu narzuconego przez logikę zarzą-
dzającą przetwarzaniem. System porównano także do zwykłego przetwarzania
pakietów odbywającego się w systemie Linux które okazało się zdecydowanie
wolniejsze z zastrzeżeniem, iż ów system dokonuje pełnego przetworzenia
pakietów a rozwiązanie w pracy jedynie ich przechwytywania. Projekt stanowi
podstawę do ewentualnych rozszerzeń, na przykład filtrowania pakietów.
Wnioski wysunięte służą pogłębieniu wiedzy w domenie sieci wbudowanych
systemów Linux oraz sprzętowej akceleracji.

vi | Streszczenie

Słowa kluczowe
Field Programmable Gate Array, sprzętowa akceleracja, sieci internetowe,
wbudowany system Linux

Acknowledgments | vii

Acknowledgments
I would like to thank Sebastian for his insurmountable support regarding
the FPGA part of the system and with providing me with his guidance in
numerous difficult concepts related to digital logic design. I would also like
to help my other colleagues from Tietoevry who were genuinely interested in
my thesis and provided valuable input regarding problems I faced during its
development.

Additionally, I would like to thank for the help and guidance I received
from my examiner Matthias Becker and my supervisor Hasini Thilanka
Thilakasiri Laddusinghe Badu.

Lastly, I would like to thank my family for their unyielding enthusiasm and
genuine interest in my research. Special appreciation to my brother Szymon
who endured my descriptions of some problems faced during the research.

Stockholm, December 2022
Jakub Duchniewicz

viii | Acknowledgments

Contents | ix

Contents

1 Introduction 1
1.1 Structure of the thesis . 2
1.2 Background . 3

1.2.1 Linux networking overview 4
1.2.2 eBPF . 4
1.2.3 SoC platform overview 6

1.3 Problem . 7
1.3.1 Original problem and definition 8
1.3.2 Scientific and engineering issues 8
1.3.3 Scientific contribution 8

1.4 Purpose . 8
1.5 Goals . 9
1.6 Research methodology . 9
1.7 Delimitations . 10
1.8 Ethics and sustainability . 10

2 Background 13
2.1 Networking on embedded devices 13

2.1.1 IoT OSes . 14
2.1.2 Linux . 15

2.2 Network packet acceleration 16
2.2.1 CPU . 16
2.2.2 GPU . 17
2.2.3 FPGA . 18
2.2.4 NoC . 18

2.3 Constrained devices and power 19
2.4 .pcap file format . 20

2.4.1 File header . 21
2.4.2 Packet header . 21

x | Contents

2.5 Avalon MM protocol . 22
2.5.1 Read sequence . 22
2.5.2 Write sequence . 22

2.6 Summary . 23

3 Method for packet offloading performance evaluation 25
3.1 Research process . 25
3.2 Test environment . 27

3.2.1 Hardware/Software to be used 27
3.3 Data collection and analysis 28

3.3.1 Data collection . 28
3.3.2 Data analysis . 29

4 Implementation 31
4.1 FPGA design . 31

4.1.1 Top module, registers and pkt_ctrl 32
4.1.2 Read control . 33
4.1.3 Write control . 33
4.1.4 Simulation . 36

4.2 Software design . 38
4.2.1 System preparation 38
4.2.2 Kernel driver . 38
4.2.3 Userspace applications 41

5 Results and analysis 43
5.1 Major results . 43

5.1.1 Baseline . 44
5.1.2 Packet size variation 44
5.1.3 Burst length variation 45
5.1.4 Clock cycle variation 46
5.1.5 Power consumption 46

5.2 Reliability analysis . 46
5.3 Validity analysis . 50
5.4 Discussion . 51

5.4.1 Capturing speed . 51
5.4.2 Power consumption 51
5.4.3 Resource utilization 52

Contents | xi

6 Conclusions and future work 53
6.1 Conclusions . 53
6.2 Limitations . 54
6.3 Future work . 55

6.3.1 What has been left undone? 55
6.3.2 Next obvious things to be done 55

6.4 Reflections . 56

References 57

A Major obstacles faced 67

B Write control code listing 69

xii | Contents

List of Figures | xiii

List of Figures

1.1 High level overview of the system. 3
1.2 Overview of the networking path in the Ethernet driver. 5
1.3 Overview of the target platform. 7

2.1 .pcap file header format . 21
2.2 .pcap packet header format 21
2.3 Avalon MM Read sequence as visible on the host. 22
2.4 Avalon MM Write sequence as visible on the host. 23

4.1 Diagram of FPGA modules and logic flow. 32
4.2 Flowchart of Read Control FSM and bursting logic. 34
4.3 Flowchart of Write Control FSM, reading from FIFO, writing

to Avalon MM agent and ringbuffer. 35
4.4 wr_ctrl simulation in Modelsim. 37
4.5 SignalTap view of the entire system. 37

5.1 Capturing time for a burst length of 4 words. 47
5.2 Capturing time for a burst length of 8 words. 47
5.3 Capturing time for a burst length of 16 words. 48
5.4 Capturing time per byte for all parameter variations. Note: BL

- burst length. 49
5.5 Total De0-Nano SoC resource utilization. 52
5.6 Detailed resource usage per module. 52

xiv | List of Figures

List of Tables | xv

List of Tables

5.1 Results of the measurements with different parameters. Note:
BL - burst length, W - words 44

5.2 Power consumption of the target board. 48

xvi | List of Tables

Listings | xvii

Listings

4.1 Example of FPGA configuration from the Ethernet device driver. 38
4.2 XDP processing function offloading work to the FPGA. 39
B.1 SystemVerilog code for the write control module. 69

xviii | Listings

List of acronyms and abbreviations | xix

List of acronyms and abbreviations

ADC Analog to Digital Converter
AMBA Advanced Microcontroller Bus Architecture
AMQP Advanced Message Queuing Protocol
API Application Programming Interface
ARP Address Resolution Protocol
ARTESSO Advanced Real Time Embedded Silicon System Operator
ASIC Application Specific Integrated Circuit
ATM Automatic Teller Machine
AXI Advanced eXtensible Interface

BPF Berkeley Packet Filter

CLI Command Line Interface
CoAP Constrained Application Protocol
CUDA Compute Unified Device Architecture

DHCP Dynamic Host Configuration Protocol
DL Deep Learning
DPDK Data Plane Development Kit

eBPF extended Berkeley Packet Filter

FCS Frame Cyclic Sequence
FEC Forward Error Correction
FIFO First-In First-Out
FOSS Free Open Source Software
FPGA Field Programmable Gate Array
FSM Finite State Machine

GPGPU General Purpose Graphics Processing Unit

HDL Hardware Description Language
HLS High Level Synthesis
HPS Hard Processor System
HTTP Hypertext Transfer Protocol
HTTPS Secure Hypertext Transfer Protocol

xx | List of acronyms and abbreviations

ICMP Internet Control Message Protocol
IDE Integrated Development Environment
IEEE Institute of Electrical and Electronics Engineers
IoT Internet of Things
IP Intellectual Property
IRQ Interrupt Request

MCU Microcontroller Unit
ML Machine Learning
MQTT Message Queue Telemetry Transport
MTU Maximum Transmission Unit

NAPI New API
NIC Network Interface Card
NoC Network on Chip
NPF Network Packet Filter

PL Programmable Logic

QoS Quality of Service

RTL Register Transfer Language
RTOS Real-Time Operating System

SoC System on Chip
SPI Serial Peripheral Interface

TPU Tensor Processing Unit

WSN Wireless Sensor Network

XDP eXpress Data Path

Introduction | 1

Chapter 1

Introduction

Ever since Defense Advanced Research Project Agency started its research
on the time-sharing of computers, the need for processing packets of data by
peers on the net has been rising ceaselessly. Now, more than 80 years after the
conception of the Internet we find ourselves surrounded by connected devices
and an ever-rising amount of data being transferred, be it via the fiberglass,
copper wires, or in the air [1]. Every day, we devise new means of utilizing
the Internet in a faster, safer, and less bothersome way. The adoption of the
Internet of Things has heavily influenced the volume of traffic and uncovered
the need for fast and low-power packet processing on Edge devices [2, 3].

Although regular Network Interface Cards (NICs) are usually equipped
with some kind of packet-accelerating silicon, they are usually absent in
embedded devices that lack exposure to such high volumes of traffic.
Nevertheless, with the adoption of Internet of Thingss (IoTs) and the rise of
Edge Computing, the niche of low-power embedded devices equipped with a
hardware accelerator arose.

Since creating and debugging Application Specific Integrated Circuits
(ASICs) is a time and money-consuming process they are usually developed
for big projects and mass use. However, if one has a need for a more
versatile device and, most importantly, a cheaper one, they usually pick a board
equipped with a Field Programmable Gate Array (FPGA) which is a clear
winner in terms of reconfigurability and accessibility to the broader populace.

Once packets are accelerated and if they are not retransmitted or dropped,
reach the end user who finally consumes them. They, however, can also
be captured for analysis, threat detection, or debugging network issues. An
example of software allowing for both capturing and visualization of captured
data is the widely-known Wireshark program [4]. Even though packet

2 | Introduction

capturing process does not necessarily require acceleration, it still requires
IO operations for storing vast amounts of data on a hard drive posing a
technological challenge [5].

Additionally, efficient packet capturing ensues creating a system capable
of both filtering the necessary packets out and at the same time not losing any
accuracy in timestamps and packet contents. Usually, it is the responsibility of
the Linux kernel to do the adequate processing and timestamping of the packets
and then pass them to the userspace. Another program that adds additional
processing capabilities apart from ordinary capturing is tcpdump [6]. It allows
for the usage of various filters and dumping the files in a myriad of different
ways.

This thesis focuses on the area of Telecommunications and Embedded
Systems, more specifically - network packet acceleration by means of a FPGA.
It additionally builds upon the domain of packet capturing and processing and
adds a custom FPGA-based capturing IP, paired with a capturing program
capable of producing .pcap compliant files.

1.1 Structure of the thesis
First, the relevant background topics are introduced, such as packet processing
in the Linux operating system, the extended Berkeley Packet Filtering system,
or the networking packet acceleration in hardware. Then, the research
problem, its purpose, and its goals are described in more detail. Also,
the research methodology is introduced in a subsequent chapter where it
elaborates on the process of developing the system, modifying various
parameters, and finally collecting and processing the resultant data. It is
followed by a description of how we approached the problem and what issues
we faced during its solution. A detailed description of various components
of the system including the programmable logic, Ethernet device driver
modifications, and the .pcap program is presented in the succeeding chapter.
Finally, the results and their interpretations are shown and discussed. The
thesis ends with conclusions and future extensions to the project reflections
on the research process and area of study.

Introduction | 3

1.2 Background
The notion of hardware accelerators has been around for quite a while, be it an
ordinary sound card, a graphics card or a specialized cryptographic chip, or
even an FPGA. In past, programming these entities required immense domain-
specific technical knowledge and was therefore quite expensive [7]. Now with
the advent of tools that allow for High level synthesis like Intel High Level
Synthesis (HLS) or Vivado HLS, any higher-level programmer can make use
of the FPGA without resorting to VHDL or SystemVerilog [8]. These tools,
obviously, cannot compete with the prowess of the human brain, but they still
are a valuable choice when one does not have the engineering resources to
write the Hardware Description Language (HDL) [9, 10].

Networking is a domain where such hardware accelerators are widely
applicable since it involves high throughput data transfers, encryption, and
multiplexing. NICs manufacturers sometimes offer such capabilities, for
example, Netronome offers its flagship Agilio product that offers hardware
packet acceleration [11]. As previously mentioned, embedded devices are
not so powerful and therefore may need to use heterogeneous hardware
accelerators such as FPGAs if such are available. Systems like this are but
a scratch on a surface of a complex problem of what to accelerate and when.

In order to better understand the system and its various components refer
to figure 1.1.

Figure 1.1: High level overview of the system.

4 | Introduction

As one may see, we have three main components in the project: the kernel
part, the FPGA part, and the userspace part. The following subsections will
give the necessary background to understand the exact implementations of
them in a related chapter 4.

1.2.1 Linux networking overview
The networking in the Linux OS is quite a complex topic and it requires a more
detailed description in this subsection. The way of a packet through the Linux
kernel is quite complex, riddled with crossroads and conditional junctions,
and has several different ways out to the user. Thankfully, the source code is
available and a helpful community has created both diagrams and detailed
walkthroughs with concrete examples. An example of such a community
member is packagecloud.io company, which made two guides, one for ingress
and one for egress packets alongside informative graphs. [12, 13, 14]

Perusing any or all of them is very time-consuming so we will instead
refer to a simplified diagram of it containing mostly parts relevant to this
thesis. In the figure 1.2 you may see that after the packet is received by the
NIC it is stored in a ringbuffer structure in RAM, then the Interrupt Request
(IRQ) is raised and the CPU starts processing the packet. The softIRQ’s
handler in this diagram is a function called stmmac_interrupt. After
this function reads the memory and sees that a packet is indeed there it will
call stmmac_rx and this function is where most of the New API (NAPI)
preparation is performed and where our eXpress Data Path (XDP) function is
called as well - stmmac_xdp_run_prog. The result of its internal function
decides the fate of our packet and as visible in figure 1.2 the packet is either
dropped, captured, or passed further via the NAPI function chain to the user.

When a packet is dropped, it is ignored and the memory it occupies can be
freed, whereas when a packet is captured it is stored in some special buffer to
be later saved to a .pcap file. Passing the packet along means the entirety of
the Linux net subsystem is invoked to process it and then present to the user.

Once the control flow reaches XDP, the next crucial step of processing
commences - the extended Berkeley Packet Filter (eBPF) virtual machine
execution and a decision on what should be done with the said packet.

1.2.2 eBPF
The eBPF [15, 16, 17] is nothing novel but rather heavily refurbished version
of the original Berkeley Packet Filter (BPF). It is constantly developed

Introduction | 5

Figure 1.2: Overview of the networking path in the Ethernet driver.

and augmented and its community is steadily growing due to a ceaseless
need for Cloud orchestration and efficient and unified resource monitoring
on Linux systems [8]. Even though it excels in performance on server
Linux distributions where hundreds or thousands of microservices need to be
monitored, it has also found some adoption in the embedded world. If one can
afford a Linux distribution on their target platform, then they surely should
consider enabling eBPF via kernel config.

Though not limited to, it works in conjunction with the Linux networking
stack to determine whether the current packet should be dropped, passed
further for processing, or transmitted to another interface. In the case of our
system, we added an additional option for capturing the packet via the FPGA.
The system relies on a virtual machine and optional Just-in-Time compilation
that adds additional overhead to our kernel but allows for a much greater speed
of execution of the programs as they are compiled instead of being interpreted.
The user can use this component by supplying a program that performs some
processing, such as filtering or analyzing packet’s headers’ contents, and once
a packet arrives the virtual machine containing this program is ran on this
incoming packet.

The programs are loaded to the kernel via special bpf syscalls that are
usually wrapped in userspace libraries like bpftool or iptables2 that
abstract the exact details of loading the programs and allow for loading and
modifying them from the Command Line Interface (CLI). The eBPF is also
accessed from the kernel side, especially in network drivers that run the
attached programs once a packet is received or transmitted and the programs
are loaded with filters determining the packet’s course.

Writing an eBPF program is usually done in the C programming language

6 | Introduction

albeit strongly constrained. Such a program cannot allocate any dynamic
memory, must check if the pointer accesses aren’t beyond this packet’s scope,
the recursion is limited to tail calls and there can be no loops (unless unrolled).
Tools to make writing these programs easier exist, an example of such are BCC
[18] and bpftrace [19].

Alongside the eBPF virtual machine, there is the XDP in the Linux kernel.
This subsystem is what calls the virtual machine and therefore dispatches the
packet to wherever it should go. XDP requires the kernel to be at least 4.12
and operates at the second lowest level of the networking stack (the link layer).
Only after XDP decides the packet’s fate and it is decided to be served, the skb
is allocated and the packet is passed further into the networking stack.

In context of this project, eBPF is used for processing the XDP program
loaded from the userspace to signal the Ethernet driver to offload the packet
capturing to the FPGA. Since eBPF is powerful enough to perform advanced
filtering on its own, enhancing it with FPGA offload functionalities could be
highly beneficial.

1.2.3 SoC platform overview
The board we have used throughout the project is Altera’s (now a part of
Intel) De0-Nano SoC. This board boasts having both an FPGA and a Hard
Processor System containing application grade 2-core ARM processor and
various peripherals integrated on the HPS’ side. Since there is not much choice
on the market when it comes to an FPGA we decided utilize the hardware we
already had, hence this board.

Featuring 40 000 logic elements, 5 phase locked loops, a dual-core
ARM A9 processor, 1GB of DDR3 SDRAM, and some peripherals including
Ethernet and Analog to Digital Converter (ADC), the board is a good starting
point for any hobbyist or academic that does not require industry-grade
expensive FPGAs. These capabilities are visible in figure 1.3.

Having been released in 2015, the board does not have prominent support
anymore as Intel has been focusing more on their newer families of System on
Chips (SoCs) (Cyclone 10, Arria, Max). Therefore, our experience with the
board has been less-than-optimal due to outdated documentation, packages,
and scarcity of users whom we could share our experiences with.

The board has been already used in my Bachelor’s thesis [20] and proved
to be a good starting point for a hobbyist or a developer that needs a Proof of
Concept solution. Due to its affordable price and our previous experience with
it, we decided to adhere to it and this time explore networking capabilities and

Introduction | 7

delve deep into the kernel.
In the future, choosing a board that is fully open-source would be desirable,

since one can avoid the vendor lock-in and what that entices - trouble with
scarce or diminishing support over the years.

Figure 1.3: Overview of the target platform.

1.3 Problem
As discussed at the beginning of this chapter and in section 1.2, with increase
of Edge Computing devices and the ubiquitous presence of Internet thanks to
IoT, also rises the need for fast and power-efficient packet acceleration. This
can obviously be done with help of ASICs but as discussed earlier, they have
their shortcomings and the development cycle is too long or the cost is too
high when one deems it necessary to add more features.

Therefore, one may choose a slightly more expensive alternative - FPGA
and offload part or whole of packet processing to it.

8 | Introduction

1.3.1 Original problem and definition
• How can we make best use of FPGA to accelerate network ingress

packets, compared to the traditional way in Linux?

• Is using an external accelerator feasible in terms of resource utilization
and power consumption?

• How does varying the clock, burst and packet sizes influence the
performance and power consumption of such system?

1.3.2 Scientific and engineering issues
Ideally, one would not need to augment the kernel and just create a kernel
driver and route all the traffic via the FPGA from NIC. However, we need to
add some modifications to our NIC’s kernel driver to ensure the packets are
not put through the userspace and the rest of kernel network processing chain,
but instead served by our FPGA. Moreover, the end user would probably like
to have an extensible system independent of the actual hardware and FPGA
model.

1.3.3 Scientific contribution
The thesis aims to deliver an extensible packet capturing and filtering
acceleration system for FPGA-equipped embedded devices. Apart from
providing an integrated system solution, it compares how differing burst sizes,
bus widths and clock frequencies can improve or worsen the performance of
our system. It also measures how different parameters can influence the power
efficiency of the solution. Because the Register Transfer Language (RTL) code
is platform-agnostic, it can be ported to a different platform, vendor or even
work with a different operating system as long as its registers will be properly
interfaced. It may also be a good study of Avalon-MM bursting capabilities
and unveil that the implementation is non-trivial even though it may look so
at a first glance.

1.4 Purpose
The purpose of this project is to probe how one may use FPGAs for packet
acceleration and create custom Linux solutions to reduce total computing
power and allow for easy extensibility. The end user can be a hobbyist, a

Introduction | 9

company that would like to use Edge devices to reduce the total workload on
Cloud centres, or perform all the computations at the Edge instead.

Also, this project aims to reduce the total power consumption by reducing
the processing workload on the CPU and offloading it to the FPGA, in effect
reducing the environmental impact such computations have. If it proves to
be unable to reduce the total power consumption, the project will provide
guidelines and data that can be used to choose proper parameters when creating
a future alternative solution.

1.5 Goals
The goal of this project is to deliver an extensible Linux packet acceleration
and capturing solution that uses the on-board FPGA. Apart from providing
insights into the process of network packet capturing, it provides experimental
results that come from modifying different parameters, such as clock speed,
burst size and packet payload size.

1. Develop an extensible and portable open sourced RTL code.

2. Provide necessary stmmac Ethernet driver patches and distribute them.

3. Develop a .pcap capturing program.

4. Develop a FPGA packet capturing testing program.

5. Provide a study of varying the burst size, packet size and the clock speed
on the packet capturing speed, contrast it with the regular in-kernel path
and measure current consumption in each case.

1.6 Research methodology
As the problem of the research already hinted, apart from an implementation
of an FPGA accelerated capturing solution, we measured how effective
modifying different parameters is - a quantitative study. Also, since we were
based on the works of previous people to assess how our approach would
fare compared to theirs (the baseline) we introduced an analytical element.
Finally, this explores a previously unrealized approach to the problem of
packet acceleration so we think it could be categorized as an exploratory study
as well.

10 | Introduction

1.7 Delimitations
The thesis does not aim to prove the superiority of using an external accelerator
for packet capturing and instead provides insight into how different parameters
can influence the capturing conditions. Only a single platform (De0-Nano
SoC) was tested and the kernel was modified specifically for this board and
the Micrel stmmac Ethernet kernel driver. Features related to filtering the
packets and their classification are absent due to the limited scope of this thesis
and the considerable effort it would take to implement them optimally. Doing
so could be a part of a commercial solution even though could be started as
a proof of concept research project. Lastly, eBPF was used only as a hook
to attach packet capturing solution even though it could do some preliminary
filtering of its own and drop some packets to even further reduce the load on
the FPGA. This is beyond the scope of this thesis since it would require adding
considerable subsystem and assessing how it interacts with the remainder of
the system.

1.8 Ethics and sustainability
Since all research should be ethical and should strive to improve our quality of
life and well-being, this research tries to fulfill these goals accordingly. Even
though the topic of hardware packet accelerators might not strike as one that
can raise concerns regarding ethics, it covers the cornerstone of all data transfer
in nowadays world - network packets. Despite users’ data being encrypted and
encoded, packet sniffing devices or taps in the network are a vulnerability and
should be mitigated [21].

Packet sniffing is ethical if done by the network administrator and serves
the improvement of the network endpoint or a particular device. Hence, we
believe that the ethical considerations regarding this project can be placated,
as the device is not efficient enough to serve as a powerful sniffer - it is rather
used as a proof-of-concept low-power capturing system.

With the rapid increase in the number of embedded devices and the growth
of the Internet of Things, the need for sustainable development and upkeep of
electronics is also soaring. Crucial is not only manufacturing the devices in a
conscious and aware way but also designing them with a long lifespan and with
power efficiency in mind. Additionally, efficient usage of available resources,
such as FPGAs, ASICs, GPUs, and cryptographic chips is on par with their
environmentally aware design.

Introduction | 11

Taking the above into account, the design and realization of packet
capturing solution in an embedded system should be as concerned with
the performance as with the power efficiency. The main issue with such
accelerators is that they require additional power to function and that might
be sub-optimal if one wants to reduce power at all costs. There are, however,
cases where this cost is mitigated and the FPGA outperforms the CPU
[22, 23]. Therefore, one should carefully assess whether using an accelerator
is necessary and beneficial for the task at hand. CPUs can usually realize the
same tasks albeit much slower, so this trade-off is to be considered.

The thesis addresses these concerns and measures the impact that this
offload has on the power consumed compared to the regular packet capturing
and processing in the CPU.

Lastly, the research does not present any personal data and operates in a
synthetic environment. The results of this work should not, however, be used
for ethically opaque activities such as packet snooping.

12 | Introduction

Background | 13

Chapter 2

Background

In this chapter, we will focus on the topic of network packet acceleration,
eBPF, and overall Linux kernel networking. We will also cover IoT OSes and
how they came to be. Some background on various acceleration platforms is
presented, especially in the context of networking. Finally, packet capturing
format .pcap is introduced and discussed and the Avalon MM protocol
used for data transferring in the PL code is presented. Even though most
of the groundwork was showcased in the preceding chapter, there remain
some nuances that require our attention. We will also discuss the relevant
background study in this area so that we can compare how this works fares
against them.

2.1 Networking on embedded devices
In past, embedded devices were usually not necessarily connected to any
network, be it via Ethernet or using some wireless protocols. More often they
would make use of low-frequency radio or very high but short-ranged, such
as infrared communication - technologies that better fit these days. If a device
required connectivity, it would often be a mission-critical e.g. an Automatic
Teller Machine (ATM) which is powerful enough to implement the TCP/IP
networking stack and use the Hypertext Transfer Protocol (HTTP) application
layer protocol. This changed with the proliferation of cheap Microcontroller
Units (MCUs)s and the rise of computing power as well as the invention of
more lightweight and robust mobile networking protocols, such as Message
Queue Telemetry Transport (MQTT), Advanced Message Queuing Protocol
(AMQP) or Constrained Application Protocol (CoAP).

Power is one of the most significant issues when it comes to embedded

14 | Background

devices [24] and it is no different with those that have networking capabilities.
As embedded devices often have to operate in low-power conditions relying
on a presence of built-in battery supplying them with power, they should be
designed to endure possibly the longest on a single charge. Therefore, as
shown in the rest of this section, choosing the proper Operating System may be
as crucial as the choice of development platform [25] when aiming to improve
single-charge uptime.

2.1.1 IoT OSes
As early as 1997, a group of researchers from Olivetti and Oracle Research
Laboratory published a paper concerning piconet - an ad-hoc network for
embedded devices [26]. In their work, they paved the way for novel ways of
connecting such small devices taking into account their low processing power,
low-rate, and low-range capabilities. Another example of early research that
later created a foundation for more mature and advanced operating systems
is TinyOS - a system for low-power wireless devices [27]. Being a tempting
choice for a Wireless Sensor Network (WSN) or any other distributed system
it gained quite a popularity at the beginning of this millennium. The OS is
based on the premise of non-blocking calls using a common call-stack for
handling events - an abstraction available in its custom programming language
nesC. Culler et al. [28] have shown in their work how to efficiently make
use of the non-blocking paradigm of this system to allow for sophisticated
networking capabilities in dot devices based on those developed in DARPA’s
and Berkeley’s Smart Dust project [29].

With the rise of Free Open Source Software (FOSS) we now have a
proliferation of different OSes to choose from [30]. From Contiki, [31] that
is designed specifically for IoT and ultra low-resource embedded devices,
through FreeRTOS [32] that is used for all kinds of devices including mission-
critical scenarios, to RIOT [33] and Zephyr [34]. These last two OSes are
the most recent and their popularity is soaring due to vibrant and helpful
communities, compelling architectures, and programming languages that they
support (Rust, C++). One should note that although FreeRTOS does not have
built-in networking capabilities it can be easily extended using its ecosystem
of libraries.

Background | 15

2.1.2 Linux
When discussing networking on constrained devices, one should not forget
about probably the most popular operating system existing - Linux. Even
though it was written with mainframes and regular powerful PCs in mind,
it is more than capable to be deployed on embedded devices [35, 36, 37]. The
real-time patch set that should be arriving in the mainline soon enough is yet
another reason why Linux should be considered the first embedded operating
system when designing a complex system. The one major disadvantage of
this system is that it usually requires much more hardware resources (e.g.
RAM, storage) than the alternative systems listed above, including Real-Time
Operating Systems (RTOSs) due to resources used by a scheduler, memory-
management and protection subsystems, and a myriad of other (configurable)
systems.

Thankfully, if one requires real-time capabilities and can afford the
overhead ensuing from the usage of Linux, there exist specially crafted patches
that change it into an RTOS [38]. Duca et al. proposed hard real-time
networking patches that integrated the RTnet networking stack deep into Linux
to provide a superb networking performance [39].

The embedded Linux community is a vibrant one, contributing steadily to
the mainline kernel and even more so thanks to the adoption of ARM-based
PCs among its developers. There is no one distribution of embedded Linux,
but rather a collection of tools that allow customization and development of a
special kernel and root filesystem fulfilling one’s needs. The two most popular
tools used for this are Buildroot [40] and Yocto [41] with the latter gaining
significant popularity and industry support. Both of these tools allow for
including different userspace libraries and applications that comprise the final
product.

As discussed above, networking is usually based on the basic Linux
network stack, but since it is an open-source system it can be replaced or
tweaked according to the developer’s needs. Additionally, the userspace side
of networking applications is usually provided by the aforementioned two
build systems and can also be cross-compiled from the source. Thanks to
the sophistication of these tools, one can create a truly unique solution and
optimize it to their heart’s content.

Even though the board used throughout the project utilizes a standard
TCP/IP stack, there already exist boards that are much cheaper and smaller,
contain an FPGA, and could make use of efficient networking acceleration.
Arduino company recently created a board that has an MCU, FPGA, and a

16 | Background

special WiFi chip - Arduino MKR Vidor 4000 [42]. As one can see, the market
need for embedded devices that are a mix of software/hardware accelerators
is rising, therefore knowledge about these topics may prove indispensable
shortly.

Moreover, one could deploy a lightweight implementation of the TCP/IP
protocols [43] or even use protocols that are used for communication of the IoT
devices instead of the traditional HTTP or Secure Hypertext Transfer Protocol
(HTTPS). The protocol stack used depends on the application choice and the
resource capabilities of the platform and thanks to such a wide variety, the
prospective developer can have sufficient flexibility in this regard.

2.2 Network packet acceleration
With the rise of IoT and the development of next-generation mobile networks,
having a wired or wireless networking chip on one’s board is nearly a standard.
It can be either a specialized auxiliary processor tasked with networking
entirely or a CPU, GPU or an FPGA purposed for this task. Having these
devices about, one should think about all the additional power that is necessary
to power them. That is why extensive research in this domain is still needed,
especially when humanity is facing the greatest climatic crisis ever. Why waste
computing resources for repetitive computations using a CPU when one can
make use of specialized hardware that would perform the same task consuming
far less power? One should however remember that running the accelerator
itself often amounts to greater power utilization in the system while reducing
the usage of the CPU, hence the task in the need of accelerating or offloading
should be chosen appropriately.

Although packet acceleration is mostly relevant to big data server clusters
and specialized networking rigs that provide the backbone of what we call
the Internet, solutions for regular customers also exist [11]. Usually, either
entirety or a part of the networking stack is offloaded to the hardware
accelerator depending on the requirements. The two most popular hardware
devices chosen usually for this task are GPUs and FPGAs and we will be
mostly focusing on the latter, however, it is also worth showing the benefits
that the former has to offer.

2.2.1 CPU
Even though they cannot be called offloading, there exist packet acceleration
solutions that operate solely in the CPU. The oldest one of them is Click - a

Background | 17

modular software architecture for creating routers that allowed for flexibility in
creating packet processing paths instead of previously hard-coded processing
routes [44]. Another widely used and currently most popular framework
is Data Plane Development Kit (DPDK) [45]. It operates all devices
in poll-mode and shifts the entirety of packet processing to userspace to
remove the overhead associated with kernel-to-userspace transfers. Additional
performance gains are due to the usage of huge-pages, cache alignment, core
pinning, and disabling interrupts. DPDK can help achieve performance up to
40 Gb/s, as shown by Zhang et al. in their work concerning the development
of 5G User Plane Function [46].

2.2.2 GPU
Since the conception of a specialized Graphics Processing Unit to accompany
the CPU, offloading the computations on everyday machines became
common. For quite a time they were used mostly for rendering 2D and 3D
graphics. However, with the rise of interest in domains of Machine Learning
(ML) and Deep Learning (DL) popularity of using GPUs as regular processing
units soared [47]. Such computations are called General Purpose Graphics
Processing Unit (GPGPU) and they can be performed in several programming
languages, the most popular of which is Compute Unified Device Architecture
(CUDA) [48]. Similarly, frameworks such as PyTorch or Tensorflow rely
heavily on GPU’s parallel capabilities and leverage it to perform heavy
operations like matrix multiplications [49, 50]. DL has been such a resource-
demanding domain that Google devised its acceleration platform only for this
problem - a Tensor Processing Unit (TPU) [51].

The availability of GPUs and their relatively low cost made them the
perfect choice for creating clusters of computing units ready to be programmed
in a language of choice, for instance, OpenCL [52]. A major advantage that
GPUs have is that programming them is quite similar to programming a regular
CPU with the distinction that special care needs to be given to divide the
resources between small computing units. However, the major disadvantage
that is highlighted by some works in this chapter is the overhead of CPU to
GPU transfers and cache coherency [53]. In past, the author has stumbled upon
this limitation when developing a GPGPU library for a BeagleBone Black
GPU [54].

In the context of network acceleration, GPUs have been used mostly
for offloading the most resource-intensive parts of packet processing. For
instance, the operation of routing the packets was entirely accelerated by

18 | Background

PacketShader [55], a library that utilizes CUDA for computing batches of
packets at a time in the GPU. The throughput performance is assessed to
be around 40 Gb/s which is a big improvement over a regular CPU 10 Gb
Ethernet. Similarly, in another accelerator project - APUNet, the computations
are performed in batches and the IO is done by CPU [53]. The data is
transferred between CPU and GPU using shared memory which is managed by
DPDK. The performance in this scenario is usually lower than that of the CPU
alone which shows that acceleration may not always be desired and sometimes
may even be detrimental to performance.

2.2.3 FPGA
Similarly to GPUs, FPGAs have first been used for operating as standalone
processing units, be it in a Radio or specialized avionics chip [56]. When used
as an accelerator, they suffer from similar bottlenecks to GPUs as the data has
to be usually gathered from or transmitted somewhere else. The overhead
ensuing from these transfers varies heavily between platforms but can be
minimized with good programming practices, proper choice of interfaces, bus
widths and appropriate clock speeds [57, 58].

FPGAs find wide application in commercial products, such as Intel’s
FlexRAN 5G/LTE network stack, especially the lower parts of the stack
responsible for precoding and Forward Error Correction (FEC) [59]. They
are also prevalent in SmartNICs that are present in big tech companies’ Cloud
datacenters [60]. Additionally, existing frameworks such as DPDK support
offloading packet processing to FPGAs, therefore gains from acceleration can
accumulate. Another heavily researched topic is using FPGAs for packet
classification [61] and assuring proper Quality of Service (QoS) in the network
[62]. In these solutions, FPGA is also usually only a part of a grander
processing system.

Apart from FPGAs there exist regular network accelerators that are in
principle ASICs designed to perform one task for the entirety of their lifespan.
The obvious downside of these accelerators is that they cannot be modified
and will be performing the same task until they are scrapped.

2.2.4 NoC
As important as it is to choose an acceleration platform and which parts of
the stack to accelerate, it is also crucial to implement the acceleration engine
in a coherent and well-communicated way. Packet switching and routing

Background | 19

are also topics that play a fundamental role in designing the acceleration
engine and crafting the Network on Chip (NoC). As shown by Abdelfattah
et al. [63] choosing a proper architecture for packet routing in the FPGA
can achieve 5 times higher processing bandwidth and 3 times lower silicone
utilization. The processing speeds of such solutions for an Ethernet switch or
a packet processor reach 400 Gb/s and 800 Gb/s respectively [63, 64] which
is a considerable speed considering that the baseline processing speed of the
regular Linux kernel can rarely reach 10 Gb/s [65].

2.3 Constrained devices and power
In past, there has been scarce research regarding packet acceleration on
constrained devices. Even though FPGAs are widely used as cryptographic
engines for computing RSA, SHA, and other key parts of the system, they
usually don’t encroach onto other segments of the networking stack [66].
Thankfully, with the rise in the popularity of IoT and Industrial IoT, research
in this domain has become gradually more desirable.

Power is consumed by the devices usually depending on how much they are
utilized, for example by switching off external accelerators or utilizing sleep
states. Disabling unnecessary peripherals is probably the easiest to achieve
and provides greatest gains in terms of consumed power, in turn sacrificing
precious cycles it takes the device to be back online. Sleep and low-power
states are another approach to this problem and they are less invasive than a
total power-off [67]. They are usually implemented in every microcontroller
device family and they usually have at least 3 states (a normal power utilization
state, a sleep state and a deep sleep state). One can also save power by
constructing clever algorithms and data sizes that are best suited for given
processor architecture and model [68].

The earliest works that accelerate networking functionality in such systems
do so by offloading the networking part onto an RTOS. Maruyama et al.
build upon previous research in the domain of FPGA-based RTOSes that are
accelerated only partly or in entirety [69]. In their work - Advanced Real
Time Embedded Silicon System Operator (ARTESSO), they offload a part of
the TCP/IP stack responsible for memory copy, TCP checksum, and header
rearrangement and leave the protocol processing to the software. Although
they do not compare performance, they conclude that they achieved over 7
times energy reduction over existing commercial firmware RTOS.

Another project that utilizes an FPGA for the realization of a part of
the networking stack does so by providing a Network Packet Filter (NPF)

20 | Background

implementation [70]. They use an SoC from Microsemi comprising an ARM
Cortex-M3 hard processor and an FPGA that is connected to a Institute of
Electrical and Electronics Engineers (IEEE) 802.15.4 transceiver via Serial
Peripheral Interface (SPI). Even though they obtained only less than 20%
reduction in processing time, it still proves that prudent choice of acceleration
scheme can be beneficial.

Gomes et al. in yet another of their works presented CHAMELIOT - a
platform for interfacing IoT systems with FPGAs [71]. They base this system
on a popular processor architecture - RISCV and provide an environment
abstraction layer that allows for easy Application Programming Interface
(API) calling from the upper layers. This way they addressed concerns that
arose from the industry’s skepticism about the adoption of said systems.
With over a twice-fold increase in performance, they proved that creating an
extensible solution that can offload any computation to hardware is feasible.
Their framework is capable of working with OSes such as RIOT, Zephyr,
or FreeRTOS. Even though they did not probe any particular networking
functionality, solutions such as mine could be deployed alongside theirs.

Since we are in the domain of embedded systems, it would be prudent
to mention the power and resource constraints that these ensuing devices
impose. A proper choice of architecture and algorithms can help tremendously
in meeting these requirements. Czapski et al. have proven that a proper choice
of parallelism can help reduce both the static and dynamic power of the FPGAs
[72]. Similarly, a choice of scheduling algorithms in the embedded systems
may have a significant impact on the total power consumption [73].

Even though there are papers that go into the possible gains due to
acceleration [74], there was no research that would go into details of the
power consumption of embedded devices that perform network offloading.
This might be due to a lack of adequate interest in this domain yet or because
when one decides to use an additional processing chip, they are not strongly
concerned about the increased power requirements. Therefore, the research
proposed here might provide a beneficial contribution in this area.

2.4 .pcap file format
To have a unified way of storing networking data for offline analysis and
comparison, the .pcap format [75] was conceived by the developers of the
tcpdump program and the libpcap library [76]. This is now a de-facto standard
capturing format and all popular network analysis tools, such as Wireshark
support it. It follows a simple scheme in which the entire capture is prepended

Background | 21

with a header and every packet is prepended with a special header. The file
ends with the last packet and no additional payloads are present at the end.

2.4.1 File header
The file header contains all necessary information for interpretation of the data
contained in the packet, notably the link type, format version, and a bitmask
indicating if a Frame Cyclic Sequence (FCS) is appended to each packet.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Magic Number

Major Version Minor Version

Reserved1

Reserved2

SnapLen

FCS f 0 0 0 0 0 0 0 0 0 0 0 0 LinkType

Figure 2.1: .pcap file header format

2.4.2 Packet header
Similarly, the packet header is quite simple and contains just a couple of fields:
the current time in seconds and microseconds that elapsed since the Unix
epoch. It also contains the original packet length and the captured packet
length and these two might differ due to truncation during packet capture.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Timestamp (Seconds)

Timestamp (Microseconds or nanoseconds)

Captured Packet Length

Original Packet Length

Packet Data (Variable Length)

· · ·

Figure 2.2: .pcap packet header format

22 | Background

2.5 Avalon MM protocol
To fully grasp the solution and the various implementation decisions, one
should understand the Avalon Memory Mapped protocol. It is used mostly
in Intel’s IPs alongside Advanced eXtensible Interface (AXI), Advanced
Microcontroller Bus Architecture (AMBA), and Wishbone protocols and is
used for communication with a memory-mapped peripheral, such as a set of
registers on an FPGA. For streaming capabilities, there is a special variation
of this protocol called Avalon ST.

Bursts are sequences of rapidly transferred data using a single interface
write command. The protocol is fairly simple if no bursts are present, but
grows in complexity when they are added due to various corner cases that
the implementer must cover. To be the most optimal, they can be of differing
sizes, depending on the bus capabilities, and can also differ in width. These
characteristics will be probed and analyzed in the future chapter(5) where we
discuss the results.

Both transaction sequences are best illustrated by figures 2.3 and 2.4. In
these transactions, we act as a host and the outside world is our agent.

2.5.1 Read sequence
The read sequence commences with filling theaddress and theburstcount,
and then submitting the read request. The read is held high as long as
waitrequest signal is asserted from the agent and is pulled low the next
cycle waitrequest goes down. The readdatavalid signal informs the
host that the data present on readdata is valid and the host can read it. Each
cycle this signal is asserted the data is changed until the agent has transmitted
burstcount data and the transfer ends.

Figure 2.3: Avalon MM Read sequence as visible on the host.

2.5.2 Write sequence
Similarly, the write sequence makes use of the address and burstcount
signals, and when they are prepared, it asserts the writes signal. The

Background | 23

agent then knows that the data to transfer is valid and decides whether it
can accept it or the host must wait and hold the data constant by asserting
waitrequest. As soon as waitrequest goes down the host knows it
can submit the next data on writedata. When the burstcount of data
is transferred, the onus is on the host to submit yet another transaction with
burstcount of data.

The burstcount parameter can be either in words or in symbols (bytes)
and this has to be agreed upon on both sides of the communication, usually
set in the Platform Designer tool.

Figure 2.4: Avalon MM Write sequence as visible on the host.

2.6 Summary
As shown in this chapter, the topic of networking, especially in embedded
devices is a complex one, as one should take great care to choose the proper
environment for their needs. Additionally, choosing when and when not to
accelerate is also of paramount importance, maybe even on par with the choice
of what to accelerate. The problem of acceleration is ubiquitous and not
only restricted to the domain of constrained devices. A careful choice of
acceleration algorithm and platform may be as important as the processing
power it provides. Nevertheless, the choice of background topics is mostly
related to embedded devices since they provide a much better test bench with
scarce resources so the coding must not be sloppy and the algorithms have to
be thought-through.

24 | Background

Method for packet offloading performance evaluation | 25

Chapter 3

Method for packet offloading
performance evaluation

Once the solution was complete and working as expected, the proper research
task could be performed. To be conducted properly, the research process had
to be meticulously planned and scrutinized once finished.

3.1 Research process
To evaluate the performance of the packet acceleration with various
parameters, a coherent research process had to be devised. Adhering to it
helped to fulfill the goals assumed earlier and answer questions formulated
beforehand.

The research process comprises several steps visible below.

1. Consider the baseline
Before any changes are made to the environment and the target board,
baseline metrics should be collected. They will later allow for the
comparison of collected parameter modification data. Since there is scarce
research on the topic, the baseline values have to be collected empirically.

2. Measure the external factors
Since the measurement is done on the whole system, there are parts over
which we don’t have control, therefore we need to compensate for them in
our measurements. An example of such an external factor is access time
from HPS to FPGA when reading or writing the registers. This access
time is constant, independent of other parameters chosen and would cause
unnecessary bias to measurements.

26 | Method for packet offloading performance evaluation

3. Choose the parameter to be modified
Choosing proper parameters for adjustment is another vital step that
impacts the success of the research process significantly. This choice of
them is motivated by the literature on FPGA optimization [57, 58] and
empirical study.

4. Define performance measures
The performance metrics have to be chosen per the previously selected
baseline metrics. An empirical study involving modification of various
parameters was performed earlier to assess what to exactly measure and
when.

5. Prepare the environment
The environment is adjusted for the modified parameter, be it a full
recompilation or just resetting the capture buffer’s contents and cleaning
old log files. Some parameters require more significant changes whereas
others can be tested in an almost unchanged environment.

6. Perform the test on the target board
The test is performed the same for every choice of parameters, hence there
is little room for mistakes. The test requires the cooperation of the target
and host platforms to send packets over the Ethernet link.

7. Collect and process the data
After the test is conducted, the data have to be collected and processed on
the host PC. The data has to be cleaned, parsed, and stored in a format
suitable for later plotting. To prevent a scientific error, the data should also
be scrutinized at this step and checked if they are logically sound.

8. Analyse results
Once the data is collected and processed, its analysis may commence. The
data can be plotted to help illustrate patterns and help form conclusions
later. Special care needs to be taken at this step as while a proper
presentation of the data may help tremendously in an understanding of the
problem, a bad one may hinder its gist equally.

9. Draw conclusions
The last step is to draw conclusions based on the data and plots obtained
from previous steps. Assuming the results proved to be valid and relevant,
the superiority of some parameters over others may be presented.

The research process presented above (except for the first step) is repeated
for every parameter choice. Since some parameter changes require a full
recompilation of the environment, they are performed from the most invasive

Method for packet offloading performance evaluation | 27

to the least. This means that first the environment is adjusted for the most
intrusive parameter and then it is tested against other parameters that do
not require such preparations. The research process could be automated,
especially in the steps related to environment preparation, data collection, and
processing if one would be willing to.

3.2 Test environment
The test environment comprises two platforms, the host PC tethered to the
target platform via an Ethernet cable. The control over the target is assumed
via an SSH connection on the host. A socket power meter is connected to
the target platform’s power supply cord and it is used for power consumption
measurement. The data is collected on the target, copied using scp to the
host, and processed using a Python program. The SD card containing the
target image and the FPGA code is flashed and programmed on the host. The
software and research-related code are cross-compiled on the host and copied
to the SD card.

3.2.1 Hardware/Software to be used
• Linux host PC - Used for development and communication with the

target board via SSH connection.

• De0-Nano SoC - Target board for testing and data collection.

• Virone EM-1 Power Meter - Socket power meter used for current
consumption measurements.

• GCC Linaro and ARM toolchains - Used for cross-compilation of
the bootloader, kernel, and rootfs. Also used for the compilation of
necessary other target binaries, such as the .pcap tool or FPGA testing
code.

• Python 3.10 - Used as a processing tool for timestamp extraction from
trace logs coming from the target platform.

• Quartus IDE - Development IDE containing SystemVerilog HDL
synthesis tools and FPGA binary image generation. Also provided the
SignalTap tool used for in-system real-time debugging.

28 | Method for packet offloading performance evaluation

• Modelsim simulator - Used for simulating the RTL code for all
synthesized modules.

• Vim text editor - The most important tool in the project, used for all
text editing in the project.

3.3 Data collection and analysis

3.3.1 Data collection
Timestamp data is collected using the built-in tracing kernel functionality
but had to be enabled via CONFIG_FTRACE kernel parameter beforehand.
trace_printk statements containing a label and kernel time in nanosec-
onds were inserted in crucial processing steps. To compensate for the time to
communicate with the FPGA using the Avalon MM interface, we performed
several measurements of 100 FPGA accesses and calculated a mean value. The
results in the next chapter are compensated by three times this amount (once for
starting address of the packet, once for its end, and once for reading the control
register). Additionally, the raw cycle count was captured from the FPGA to
contrast it with the measurements taken from the kernel. The capturing time
is calculated using the equation 3.1, where T is the clock period - a reciprocal
of the clock frequency and clock_cycle_count is the number of clock cycles it
takes the FPGA to process the packet.

t = clock_cycle_count ∗ T (3.1)

For the generation of network traffic the ordinary Linux ping command is
used with -s flag to specify TCP payload size -i flag to specify the interval of
0.2s and -c to specify a count of 100 packets transmitted. Since the board has
a static IP, dhcpd.service has to be disabled on the host to prevent from
dropping the connection every few seconds. During the test, it was determined
that background traffic contained Address Resolution Protocol (ARP) and
Dynamic Host Configuration Protocol (DHCP) packets, of which the latter
disappeared after disabling this functionality on the host. To not interfere with
the test results, these packets are ignored.

To access the buffer containing trace logs, the tracing filesystem has to be
mounted using the following command:
mount -t tracefs tracefs /sys/kernel/tracing.
Afterwards, the trace file contents can be dumped to a log file once the test
concluded. After copying the data to the host, it is processed using the Python

Method for packet offloading performance evaluation | 29

script calculating the total FPGA execution time and some other statistical
parameters derived from it.

Several metrics are used throughout the project, most important of which is
capturing time - the total time it takes from the arrival of the packet on the NIC
to being in a memory buffer available for usage from the userspace. Processing
speed is sometimes used interchangeably to describe the same quantity. Time-
per-byte is an additional metric that describes the total time spent in the FPGA
divided by the number of bytes processed for this packet.

Since the mains socket power measurement tool does not provide sufficient
accuracy of the power reading, we use it for measuring current and then
calculate power using the equation 3.2. The resistance was measured under
a typical load using the same meter and then assumed to be constant when
calculating dissipated power. The current was measured during each test and
if it fluctuated between two values, the highest of them was chosen.

P = I2 ∗R (3.2)

3.3.2 Data analysis
After the data collection and processing, it can be analyzed. Plots and charts
are important tools for easing the analysis and conclusion-drawing process as
hidden relations between data may be uncovered. A standard statistical set of
tools for data analysis is used to provide a mean, standard deviation, median,
and minimums and maximums from every test result. To better illustrate
the performance implications modifications of test parameters may have, an
additional metric was developed - time per byte. The equation 3.3 illustrates
how it is calculated.

tper_byte =
tmean

packet_size
(3.3)

30 | Method for packet offloading performance evaluation

Implementation | 31

Chapter 4

Implementation

This chapter describes the solution in more detail, starting from the hardware
part where it explains the capturing logic and finishes with an explanation
of how the software part was designed. Decisions that shaped the resultant
project are also presented and discussed along the way.

4.1 FPGA design
The programmable logic part was designed and tested on the De0-Nano SoC
development board. The design of the system is based on the Golden Hardware
Reference Design provided by Altera on a CD accompanying older boards or
available on their website [77]. This design provides a good starting point for
the Cyclone V series and this board in particular. It provides a top module,
pin-out and a soc_system - an abstraction that allows for near-seamless
integration of various Intellectual Property (IP)-components available in the
Intel Quartus Integrated Development Environment (IDE).

Intel’s Platform Designer is a tool used for designing the SoC system in a
high-level manner. We use it for adding support for necessary bridges and
integrating our custom IP component - bpfcap_fpga. It is GUI based,
hence we were able to avoid some common errors that are present when
designing complex systems, for instance, omission of signal assignments.
The tool generates necessary bindings, and translations between protocols
and provides other glue logic to communicate itself with the Hard Processor
System (HPS).

For all of the programmable logic that we have written, we used
SystemVerilog, which is much more robust and prevents many coding errors
that its younger sibling Verilog does not avoid. We also decided not to use

32 | Implementation

VHDL programming language for this task as it is overly verbose. Most
of the logic in the design is clocked, apart from some minor parts where
for bit selection or conditional assignments combinatorial logic was more
appropriate. This way we prevented the creation of latches and the propagation
of unwanted delays in the system.

Although the components comprising the system could already be seen in
figure 1.1, they are magnified in figure 4.1 and will be discussed in more detail
in this section.

Figure 4.1: Diagram of FPGA modules and logic flow.

4.1.1 Top module, registers and pkt_ctrl
Starting with the top module, one can see that the module communicates with
the outside world using the Avalon MM protocol [78], assuming the role of
the host twice (once for reading and once for writing control) and once as the
agent (for communication as the memory-mapped device from the Linux side).
Apart from instantiating necessary components and detecting a start of a new
transaction, the acts as the glue logic.

Implementation | 33

There is a standard register module, that holds several registers that control
the internal system state and also inform the external components whether
it is still busy processing or is ready for receiving more data. The system
also contains a state machine that controls the execution of both read and
write control modules. Thanks to it, the system knows when to start and stop
processing. Additionally, there is a minor module for timestamp generation
that contains just two counters, one for seconds and another for nanoseconds.

The user interacts with the top module by providing the address of the
register they wish to modify and the data. Once they write to the pkt_end
register, the Programmable Logic (PL) knows it should start processing.

4.1.2 Read control
The reading module is responsible for obtaining the packets from the
kernelspace. Once it starts, the state-machine enters the READY state,
as visible in figure 4.2, and the loading of new packet data from RAM
commences. It knows from whence to read the data as the register module
has already latched it beforehand. The data is segmented and read in bursts (a
parameter that is modified during testing). When a burst is finished, either a
new one is triggered or the transfer finishes - this is controlled by the parameter
total_size which is set upon starting the Finite State Machine (FSM).

The communication with Avalon MM is done as described in the
section related to bursting reads 2.5. Whenever readdatavalid
signal is high, the data is ready to be read from the interface and
burst_segment_remaining_count is decremented by the size of the
data read in bytes. Conversely, a waitrequest prevents the module from
loading any more data until it is pulled low.

The data read from the RAM is sent to a First-In First-Out (FIFO) (an
Intel’s IP) where it waits for receiving by the write control module. The FIFO
provides an almost_full signal to indicate it will not receive any more
data. In such a case, the ingress of data halts, and the logic waits until the
write module sufficiently empties the queue.

4.1.3 Write control
Even though originally planned to be equally simple to as reading counterpart,
the write control module proved to require more fine-grained control over
stalls and packet flows. Once it is triggered, sends a .pcap compliant header
containing the timestamp and the transmitted packet size. Afterward, the

34 | Implementation

Figure 4.2: Flowchart of Read Control FSM and bursting logic.

Implementation | 35

Figure 4.3: Flowchart of Write Control FSM, reading from FIFO, writing to
Avalon MM agent and ringbuffer.

regular packet contents follow as long as the FIFO is not empty and the output
interface does not signal a stall through a waitrequest asserted high.

36 | Implementation

The transfers are organized into bursts of a preset length controlled by a
high-level parameter. This parameter is modified in the succeeding section
concerning the results. The problem of stalling of the write pipeline is solved
with skid-buffers - encapsulated registers that detect that a stall occurred and
hold the value until the flow can proceed [79]. The overhead induced by using
these buffers is negligible, hence they prove to be superb for high throughput
applications such as this.

This module contains two states WR_TIMESTAMP and WR_PKT_DATA
as different logic is necessary for transmitting the .pcap header and regular
packet data. The FSM visible in figure 4.3 shows the transition between these
states.

Packets are segmented into burst size units and transmitted over the
Avalon MM interface, it is performed similarly to its reading counterpart,
except for special handling of timestamp transmission and possible stalling
on the receiving end. Therefore, the logic is significantly more complex and
constitutes a major part of the project. Flowcharts in figure 4.3 illustrate these
two paths with somewhat greater granularity. Appendix B contains full code
for this module for reference.

The module also contains a ringbuffer functionality to allow for the
continuous capture operation. When the write address is near the end of the
buffer, special logic determines whether a transaction split should occur and
how to perform it. Afterward, it resets the write address to be the beginning
of the buffer. Figure 4.3 depicts how it is done.

4.1.4 Simulation
The programmable logic was simulated using two simulators - Intel’s Mod-
elsim and SignalTap. Modelsim simulator supports only the synthesizable
subset of SystemVerilog but that was sufficient for our needs as we did not
need any high-level constructs offered by this language.

The code is organized to allow compilation and running of the simulation
from the CLI in mind for possible future integrations in a bigger build
system. Controlling running the Modelsim simulation is done by setting an
environmental variable.

The testbenches written test the components in isolation as well as test
the entirety of the solution. Nevertheless, most of the system-level testing
was done on the hardware using the SignalTap logic analyzer due to the
shortcomings of the simulation tools. Such shortcomings include a four-
state logic whereas on an FPGA there are only two states, another one is a

Implementation | 37

default width-extension of variables in Modelsim, whereas on the hardware
they are truncated. One major drawback of Signaltap is that without a paid
subscription for Quartus IDE, each traced signal modification resulted in a
full recompilation which is quite time-consuming.

Nevertheless, both of these tools proved to be indispensable when
squashing various logic bugs that are elaborated upon in the appendix A.

Figure 4.4: wr_ctrl simulation in Modelsim.

Figure 4.5: SignalTap view of the entire system.

38 | Implementation

4.2 Software design

4.2.1 System preparation
The software part of the system is composed of the system, driver, and
userspace parts. The system part is a uboot bootloader, Linux kernel, and
a rootfs. The bootloader and the kernel are forks of their respective origins
initially made by Altera and now maintained by Intel [80, 81]. The rootfs
is based on Buildroot pseudo-distribution [40] and required the addition of
several scripts to allow for SSH Ethernet connections and utilizing bpfcap
userspace functions.

4.2.2 Kernel driver
To control the FPGA from the networking stack, we had to modify the in-tree
Ethernet driver for embedded devices used by De0-Nano SoC - stmmaceth.
The driver is augmented to initialize the device when the Ethernet device is
configured and also when capturing packets that arrive from the NIC. Snippets
of code responsible for FPGA configuration and packet capturing are visible
in listings 4.1 and 4.2.

First, a memory region for FPGA registers has to be requested from the
Kernel, and then ioremap’ped. Once it is done, raw FPGA registers can be
written to via writel functions. Upon reloading or unloading the driver the
device is unmapped and the memory is freed.

1 #define BPFCAP_PHYS_ADDR 0xc0010000
2 #define BPFCAP_BUF_START 0x3fff0000
3 #define BPFCAP_BUF_SIZE 0x10000
4 #define BPFCAP_REG_SIZE 0x1C
5 static void __iomem *bpfcap_fpga_dev;
6

7 int stmmac_open(struct net_device *dev)
8 {
9 // ommited

10

11 // reserve FPGA iomem
12 struct resource *region = request_mem_region(

BPFCAP_PHYS_ADDR, BPFCAP_REG_SIZE, ”bpfcap_fpga_priv”);
13 if (!region)
14 {
15 printk(”Failed to allocate memory region”);
16 goto init_phy_error;
17 }

Implementation | 39

18 bpfcap_fpga_dev = ioremap(BPFCAP_PHYS_ADDR,
BPFCAP_REG_SIZE);

19

20 // set the buffer
21 printk(”Writing 0x%08x to addr %p”, BPFCAP_BUF_START,

bpfcap_fpga_dev + 0xC);
22 writel(BPFCAP_BUF_START, bpfcap_fpga_dev + 0xC);
23 printk(”Writing 0x%08x to addr %p”, BPFCAP_BUF_SIZE,

bpfcap_fpga_dev + 0x10);
24 writel(BPFCAP_BUF_SIZE, bpfcap_fpga_dev + 0x10);
25

26 // ommited
27 }

Listing 4.1: Example of FPGA configuration from the Ethernet device driver.

Only after a proper XDP program that returns a custom exit code is
loaded, the packets start to flow through the FPGA. This is done in the
function __stmmac_xdp_run_prog which is run each time a ingress
packet arrives. Struct xdp_buff contains the packet’s start and end address
as a pointer to virtual memory. Therefore, a virtual-to-physical translation has
to be performed and this is done by the virt_to_page kernel function and
alignment of the resulting address to a page boundary. It should be noted that
the code is not portable if the platform has pages that are not of 4 KB size.

Once the physical address of the packet is obtained it can be written to
the FPGA and the processing of the packet continues in the hardware. There
exists a possibility that the FPGA is still processing the packets even after
the writel function returns and for this reason, a check to see if the packet
is still processing was implemented. When the packet has been processed,
the function returns with XDP_PASS to indicate that the result of the XDP
filtering is successful and the packet can proceed through the kernel. This can
be changed to XDP_CONSUMED to indicate that the packet has been processed
and can be freed without being served by the kernel.

1 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
2 struct bpf_prog *prog,
3 struct xdp_buff *xdp)
4 {
5 u32 act;
6 int res;
7 u64 t1, t2;
8

9

10 printk(”Entered __stmmac_xdp_run_prog”);
11 printk(”Packet start addr 0x%08x end addr 0x%08x”, xdp->

40 | Implementation

data, xdp->data_end);
12 printk(”Data length %d”, xdp->data_end - xdp->data);
13

14 int i;
15 struct page *page = virt_to_page(xdp->data);
16 void* phys_start = page_to_phys(page) + ((int)xdp->data &

0x00000fff);
17

18 t1 = ktime_get_ns();
19 act = bpf_prog_run_xdp(prog, xdp);
20 t2 = ktime_get_ns();
21 trace_printk(”XDP processing time %llu\n”, t2 - t1);
22

23 switch (act) {
24 case XDP_PASS:
25 res = STMMAC_XDP_PASS;
26 break;
27 case XDP_TX:
28 res = stmmac_xdp_xmit_back(priv, xdp);
29 break;
30 case XDP_REDIRECT:
31 if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
32 res = STMMAC_XDP_CONSUMED;
33 else
34 res = STMMAC_XDP_REDIRECT;
35 break;
36 /* XDP_FPGA_CAPTURE */
37 case 5:
38 {
39 t1 = ktime_get_ns();
40 trace_printk(”Before FPGA %llu\n”, ktime_get_ns()

);
41 u32 reg = readl(bpfcap_fpga_dev);
42 //printk(”Writing 0x%08x to addr %p”, phys_start,

bpfcap_fpga_dev + 0x4);
43 writel(phys_start, bpfcap_fpga_dev + 0x4);
44 //printk(”Writing 0x%08x to addr %p”, phys_start

+ (xdp->data_end - xdp->data), bpfcap_fpga_dev + 0x8);
45 writel(phys_start + (xdp->data_end - xdp->data),

bpfcap_fpga_dev + 0x8);
46

47 i = 0;
48 /* unlikely */
49 while (reg & (0x1 << 31) && i < 100) // while

BUSY
50 {
51 reg = readl(bpfcap_fpga_dev);

Implementation | 41

52 ++i;
53 printk(”STILL PROCESSING i=%d”, i);
54 }
55 if (i == 100)
56 printk(”TOO LONG i over 100”);
57

58 t2 = ktime_get_ns();
59 reg = readl(bpfcap_fpga_dev + 0x18);
60 trace_printk(”Actual FPGA time 0x%08x\n”, reg);
61 trace_printk(”FPGA processing time %llu\n”, t2 -

t1);
62

63 //printk(”Returned XDP_FPGA_CAPTURE”);
64 //res = STMMAC_XDP_CONSUMED;
65 res = STMMAC_XDP_PASS;
66 }
67 break;
68 default:
69 bpf_warn_invalid_xdp_action(act);
70 fallthrough;
71 case XDP_ABORTED:
72 trace_xdp_exception(priv->dev, prog, act);
73 fallthrough;
74 case XDP_DROP:
75 res = STMMAC_XDP_CONSUMED;
76 break;
77 }
78

79 printk(”Handled xdp bpf with return %d”, act);
80 return res;
81 }

Listing 4.2: XDP processing function offloading work to the FPGA.

4.2.3 Userspace applications
Finally, the last component of the solution is a simple userspace application
capable of dumping the captured memory to a .pcap file. The application
mmaps a part of the memory where the dump buffer resides, opens a file, and
writes a special .pcap file header to which it then appends the contents of
the capture buffer - packet data. The user may choose how much memory to
save and the name of the file under which to store captured packets.

The other application is used for testing purposes and was used extensively
in the early stages of the project when integration into the Linux kernel was still
under development. It allows for testing the FPGA code without intervening in

42 | Implementation

the Ethernet driver code, hence it may be used for testing additional features. It
operates by using the reserved kernel memory buffer as the reading and writing
destination simultaneously so it might be sub-optimal and not representative
of the real scenario because the memory is shared.

Results and analysis | 43

Chapter 5

Results and analysis

In this chapter, we present the results of running the packet capture acceleration
with various parameters and with varying clock speeds and discuss them. We
start by comparing a quantitative study of different packet lengths and how it
impacts the capturing time. Similarly, we check how different burst lengths
impact this speed. Finally, we compare how increasing the clock speed of the
design affects this metric. The power consumption of the system across several
configurations is also presented. Lastly, a qualitative comparison of regular in-
kernel Linux packet processing is carried out against our solution. All the tests
were carried out successfully, following the test methodology described in the
section 3.1.

5.1 Major results
Sections below describe how varying the burst length and packet size
performed under each clock frequency. Varying the packet sizes was
performed for every other parameter and requires no changes in the test
environment. Changing burst lengths and increasing the clock frequency
requires a full recompilation of the project and some adjustments to the testing
harness. For every measurement, we provide a set of statistical variables:
mean, median, standard deviation, minimum, and maximum. These are
calculated after the data collection in the processing step. Every measurement
consists of capturing 100 packets providing a fair level of diversity of the
results.

44 | Results and analysis

Table 5.1: Results of the measurements with different parameters.
Note: BL - burst length, W - words

(a) f=50 MHz BL=4 W
Time [ns]

Packet size [B] Mean σ Median Min Max

32 2209 114 2180 1940 2520
64 3033 110 2980 2940 3320
128 4677 136 4620 4540 5060
256 7993 162 7960 7740 8440
512 14587 279 14540 14160 15440
1024 27706 1409 27690 14520 29320

(b) f=50 MHz BL=8 W
Time [ns]

Packet size [B] Mean σ Median Min Max

32 1658 101 1640 1620 2040
64 2203 105 2180 2100 2600
128 3321 151 3300 3140 3780
256 5510 207 5500 5220 5920
512 9931 555 9980 5740 11140
1024 18683 1379 18940 6880 20640

(c) f=50 MHz BL=16 W
Time [ns]

Packet size [B] Mean σ Median Min Max

32 1440 50 1420 1420 1780
64 1666 60 1640 1640 1960
128 2339 100 2290 2280 2680
256 3849 182 3880 2320 3980
512 7081 381 7080 3880 7700
1024 13525 427 13480 12960 14800

(d) f=100 MHz BL=4 W
Time [ns]

Packet size [B] Mean σ Median Min Max

32 1113 50 1090 1070 1270
64 1521 73 1500 1070 1700
128 2335 111 2320 1470 2550
256 3981 186 3980 2370 4270
512 7282 361 7270 4020 7720
1024 13785 681 13850 7540 14640

(e) f=100 MHz BL=8 W
Time [ns]

Packet size [B] Mean σ Median Min Max

32 824 46 810 790 1000
64 1102 58 1090 810 1270
128 1653 98 1645 1090 1930
256 2760 162 2770 1790 3130
512 4983 307 4965 3110 5960
1024 9366 613 9465 4960 10370

(f) f=100 MHz BL=16 W
Time [ns]

Packet size [B] Mean σ Median Min Max

32 718 18 710 710 820
64 830 33 820 710 980
128 1160 53 1150 820 1350
256 1947 97 1940 1150 2170
512 3545 195 3550 1940 3880
1024 6711 376 6720 3510 7350

(g) f=200 MHz BL=4 W
Time [ns]

Packet size [B] Mean σ Median Min Max

32 556 26 545 535 645
64 754 34 745 545 855
128 1169 58 1165 735 1280
256 1988 95 1990 1160 2155
512 3628 194 3633 1970 3840
1024 6925 355 6925 3620 7355

(h) f=200 MHz BL=8 W
Time [ns]

Packet size [B] Mean σ Median Min Max

32 411 20 405 395 485
64 549 31 545 395 660
128 832 48 825 625 960
256 1390 90 1385 795 1600
512 2505 155 2503 1390 2765
1024 4687 288 4735 2585 5160

(i) f=200 MHz BL=16 W
Time [ns]

Packet size [B] Mean σ Median Min Max

32 379 11 375 375 455
64 433 13 430 380 520
128 580 24 575 430 665
256 980 56 970 575 1075
512 1782 53 1775 1710 1960
1024 3370 199 3370 1710 3675

5.1.1 Baseline
Baseline is evaluated by measuring the time it takes a packet from arrival in
kernel until it is copied out to userspace. This time was estimated to be around
50 microseconds independent of other parameters that affected processing
speed through the FPGA. Time is measured using ktime_get_ns() kernel
calls which return the time that elapsed since boot in nanoseconds resolution.
The power consumption of the baseline is visible in the table 5.2 at row Board
normal state.

5.1.2 Packet size variation
Packet sizes are varied starting from 32 bytes of payload that was added on
top of the Internet Control Message Protocol (ICMP) packet of 40 bytes up to

Results and analysis | 45

1024 bytes in size. For every successive test, the payload size is doubled up to
1024 bytes which are near the boundary of a regular 1500 bytes of Maximum
Transmission Unit (MTU).

Capturing times of packets of differing sizes are visible in subtables of the
table 5.1 where BL stands for Burst Length and W means words. Figures 5.1,
5.2 and 5.3 show this increase in graphical format for every clock frequency.
The time presented in the tables and figures corresponds to packet capturing
time as viewed from the FPGA.

As expected, with the increase in the packet length, the total capturing time
also increases. This is true regardless of burst length or clock frequency and
can be explained by the time it takes for the FPGA to process the additional
payload. Whereas for small packet sizes such as 64 or 128 the increase in
capturing time does not seem to be doubling, it is more obvious for longer
packets. This can be explained by the necessary overhead of running the
hardware logic that runs independently of the packet size.

5.1.3 Burst length variation
Burst lengths assumes 3 values: 4, 8, and 16 words. These values were chosen
empirically also being a popular choice for bursting interfaces when power
and low cycle count is desired.

For every burst length, we can observe quite low standard deviation values
which hints that there are no outliers in the data. Similarly, the median is
very close to the mean, and in some cases, it is even equal which further
hints that processing logic runs in a deterministic fashion and with only
slight delays. These delays are probably induced by the interconnect logic
or stalls on the FPGA2HPS bridge that is used for FPGA to SDRAM and HPS
communication.

Whereas when increasing the clock cycle the total capturing speed is
almost exactly halved, for an increase in burst length, the time does not drop
as significantly. Nevertheless, a gain of around 33% per each length increase
is a desired and expected outcome. The reason why the gain is not as big
as the one due to the clock frequency increase may be caused by the external
interface implementations and the overhead associated with them. One should
remember that due to hardware limitations, we were not able to directly utilize
the FPGA2SDRAM bridge, but instead had to rely on the FPGA2HPS bridge
and Avalon MM to AXI interconnect.

46 | Results and analysis

5.1.4 Clock cycle variation
We were able to synthesize code with 3 clock speeds: 50, 100, and 200 MHz,
and modified the two remaining parameters for each of these speeds. For each
doubling in clock frequency, the capturing time almost exactly halved. This is
visible in figures 5.1, 5.2, 5.3 and is most striking in figure 5.4.

An increase in clock cycle frequency directly influences the speed at which
the FPGA processes packets and performs the logic operations. Since SDRAM
onboard De0-Nano is already clocked with 200 MHz, using a clock slower than
that is an under-utilization and a plausible bottleneck when interfacing with the
memory. CPU, being another element of the system under test, is clocked at
a much higher frequency, hence an increase in FPGAs frequency provided a
visible reduction of total capturing time.

The per-byte capturing time decreases with an increase in the clock
frequency and burst length which is also something foreseen. While for
smaller clock frequencies, the improvements in the per-byte capturing time
were greater, they were much less striking as the packet size increased for a
higher frequency. This discrepancy may be explained with compensation of
the logic overhead that is almost the same no matter the parameter variation.
With more total time spent processing packets and keeping internal logic
processing time constant, this overhead spreads more evenly across every byte.
The result is visible with a flattening of the curve in figure 5.4.

5.1.5 Power consumption
Board stripped of the FPGA code consumes the same amount of current as
when the code is loaded. Unloading the Ethernet driver reduces the current
consumption from 41 mA to around 36 mA. The power does not change
significantly when the clock speed is increased as can be seen in the table
5.2. Between various tests, the current consumption was oscillating around 41
mA hinting that the FPGA code was not inducing any additional load to the
system. The board also does not consume any additional power when

5.2 Reliability analysis
The repeatability of a scientific experiment is of paramount importance when
one wishes to expand upon the findings from previous research. Small
perturbations in a seemingly unrelated part of the test harness can greatly
disturb the outcome, in effect ruining the experiment. Great care has to be

Results and analysis | 47

Figure 5.1: Capturing time for a burst length of 4 words.

32 64 128 256 512 1024
0

1

2

3

4
×104

2,
20
9

3,
03
3

4,
67
7 7,
99
3

14
,5
87

27
,7
06

1,
11
3

1,
52
1

2,
33
5

3,
98
1 7,
28
2

13
,7
85

55
6

75
4

1,
16
9

1,
98
8

3,
62
8 6,
92
5

Packet Size[B]

Ti
m

e[
ns

]
50 MHz
100 MHz
200 MHz

Figure 5.2: Capturing time for a burst length of 8 words.

32 64 128 256 512 1024
0

1

2

3

4
×104

1,
65
8

2,
20
3

3,
32
1

5,
51
0 9,
93
1

18
,6
83

82
4

1,
10
2

1,
65
3

2,
76
0

4,
98
3 9,
36
6

41
1

54
9

83
2

1,
39
0

2,
50
5

4,
68
7

Packet Size[B]

Ti
m

e[
ns

]

50 MHz
100 MHz
200 MHz

48 | Results and analysis

Figure 5.3: Capturing time for a burst length of 16 words.

32 64 128 256 512 1024
0

1

2

3

4
×104

1,
44
0

1,
66
6

2,
33
9

3,
84
9 7,
08
1

13
,5
25

71
8

83
0

1,
16
0

1,
94
7

3,
54
5 6,
71
1

37
9

43
3

58
0

98
0

1,
78
2

3,
37
0

Packet Size[B]

Ti
m

e[
ns

]

50 MHz
100 MHz
200 MHz

Table 5.2: Power consumption of the target board.

Current [mA] Power [W]
Idle: Board normal state 41 4.67
Idle: Board no Ethernet 36 3.60

Processing: Baseline in-kernel processing 41 4.67
Processing: FPGA code at 50/100 MHz 42 4.90

Processing: FPGA code at 200 MHz 41 4.67

Results and analysis | 49

Figure 5.4: Capturing time per byte for all parameter variations. Note: BL -
burst length.

32 64 128 256 512 1024
0

10

20

30

40

50

60

Packet Size[B]

Ti
m

e[
ns

]

50 MHz BL=4 50 MHz BL=8 50 MHz BL=16
100 MHz BL=4 100 MHz BL=8 100 MHz BL=16
200 MHz BL=4 200 MHz BL=8 200 MHz BL=16

50 | Results and analysis

applied when conducting research such as this, where a human is part of the
testing loop.

Performing this research requires changes in only one parameter at once,
running the test scenario, and finally obtaining and cleaning the data. Since
the system under test is an embedded device, there is not much background
noise that could influence the accuracy of measurements and if there is any,
the system rejects it. As mentioned in the section describing the research
methodology, this noise comes from spurious networking packets on the
Ethernet connection that influence only the packet transmission time and not
the actual capturing time.

Nevertheless, since this is a regular Linux distribution, some tasks happen
periodically and daemons run in the background, possibly interfering with the
system. These interferences are, however, not relevant to our measurements
as the packets are handled inside IRQs, and kernel tasks have higher priorities
than userspace ones.

Measuring across only 100 packets may not be sufficient enough to capture
all possible outliers and provide an accurate statistical representation of the
packet capturing time. However, repetition of these processes for several
configurations at different periods tests the scenario against various system
states, effectively reducing the impact of this short measurement period on
reliability.

5.3 Validity analysis
The selection of a proper measurement process and metrics is equally
important as assuring that the test conditions are repeatable. Therefore,
measuring time in the kernel had to take into account the standard inaccuracy
induced by the limitations of internal clock resolution. These results are
contrasted with much more accurate clock cycle counts performed by the
hardware.

Due to the limited resolution of the power consumption meter, this
measurement may be highly unreliable and is included in the report only as
a cursory finding. In an industrial application, one would use professional
equipment for such measurements.

Human error is reduced to a minimum thanks to the usage of data
processing automation scripts. If one wished to increase reliability in this
aspect, one would need to automate the entire testing environment which
makes for a formidable task.

Results and analysis | 51

5.4 Discussion

5.4.1 Capturing speed
As presented in the previous section, the packet capturing speed is influenced
directly by an increase in the burst length and the clock frequency.

Measurements of the capturing speed from the kernel side show hat the
FPGA access overhead is constant and equals about 243 nanoseconds per
access. Moreover, since this is asynchronous processing and the CPU does
not need to wait for the accelerator to finish processing, it can continue serving
the IRQ and processing more work. Even at the lowest clock frequency, the
capturing time of FPGA is less than the time between IRQs served in a non-
RT Linux kernel which operates at millisecond resolution while the heaviest
packets take only up to 3 microseconds to process.

Regular in-kernel packet processing is determined to be around 50
microseconds, measured from the start of the IRQ until the packet’s
transmission to userspace. Hence, our packet-capturing solution outperforms
regular kernel processing by a factor of 16 for the worst-measured case and
over 100 times for the best case. It must be noted that kernel adds additional
processing on top of packet capturing that our solution is missing and therefore
this result is not an equal comparison. Hence, kernel’s processing time has a
big overhead accompanying its capturing time.

5.4.2 Power consumption
Interestingly, the power consumption does not change drastically with varying
the packet size and remains steady even when the clock frequency increases.
This is contrary to expectations, since we do not compute anything in the
FPGA so it should be not consuming any power, and is a welcome observation
given how crucial power efficiency is in the domain of embedded devices. The
lack of changes in this area might be due to the small size of processing logic or
optimal implementation and not much data being processed simultaneously.

Findings in this area support claim that Possa et al.[57] have made
concerning offloading part of the processing to FPGAs to reduce total power
consumption in the system. While this project is not offloading a computation-
heavy and highly parallelizable algorithm as was done in [23], a small
reduction of total capturing speed was expected at lower clock speeds. More
research in this area is necessary to formulate a conclusive claim.

52 | Results and analysis

5.4.3 Resource utilization
As visible in figure 5.5, the design consumes less than a quarter of logic
elements. Most resources are consumed by the write control module and the
interconnect between SDRAM and the Avalon MM host is implemented by
the reading and write control modules. Details on the exact logic elements
used by each module are visible in the figure 5.6.

Figure 5.5: Total De0-Nano SoC resource utilization.

Figure 5.6: Detailed resource usage per module.

Conclusions and future work | 53

Chapter 6

Conclusions and future work

This chapter concludes the work performed in this research. Relevant
conclusions are presented, especially those about potential gains from utilizing
hardware accelerators in embedded devices. Limitations, being an inseparable
part of every research problem have to be discussed and explained. Since the
project aims to be easily extensible, some future work is suggested as a definite
addition and the priority of these extensions is discussed based on the gained
benefits. Finally, reflections on the socioeconomic and environmental aspects
of the research are probed in more detail.

6.1 Conclusions
The core goal of the thesis was the development of an extensible FPGA packet
accelerator that would utilize the eBPF subsystem. From it, stems its logical
continuation of probing the performance of the implemented solution and
discussing possible implications of different parameter values. Evaluation of
these goals is present in chapters 4 and 5 where justifications design decisions
and discussions of the obtained results are provided. Since attaining the
primary goal was for a time at a risk, its implementation is a major success
and provides a solid groundwork for future developments in this domain. The
conception of which parameters to modify took place during its development
and therefore proved to be a solid and motivated choice. The main findings
include the obvious performance gain from an increase in the clock frequency,
regardless of other parameters, up to a maximum reachable frequency of the
target platform of 200 MHz. Surprisingly, this increase does not follow in
an increased current consumption which may indicate that one could start
with a high clock speed when developing a similar solution and not pay the

54 | Conclusions and future work

penalty of wasted energy. However, it must be noted that the system does
not use any sleep states which might reduce its total power consumption.
Increases in burst lengths prove to also be beneficial to packet processing but
not as effective as raw clock speedup. Time per byte is a great indicator of
high overhead associated with the processing of small packets and proved
that packet sizes of sizes 128 bytes and greater are much more suitable.
Lastly, the solution proves to be faster than baseline Linux packet processing
significantly. This conclusion is only cursory and to determine systematically
the superior implementation would require major changes to the Linux kernel
which is out of scope for this thesis.

6.2 Limitations
A few obstacles were encountered during the development of the thesis, some
of which are explained in more detail in appendix A. One of these includes
the inability to use the FPGA2SDRAM bridge that could not be configured
under our software configuration regardless of different Cyclone V register
modifications. Therefore, the highest possible bus width of 256 bits between
SDRAM and FPGA is not utilized, and instead, only 128 bits are used.

Because the interconnects between Avalon and AXI are automatically
generated, we have no control over their implementation and resource usage.
They are additionally a closed-source IP of Intel which even further prevents
any optimizations to be done in them.

Since there are no low-power states utilized, the solution was not compared
to a power-optimized version of regular in-kernel packet capturing. With these
states one would have a better understanding how this solution can compete
against a low-power system.

The project has only been tested on a single platform with a single Ethernet
driver, hence it is not a generalized solution. However, testing different target
boards would induce high costs and a tremendous effort to implement the
necessary code and configure the platforms.

Moreover, the power measurement is not sufficiently accurate due to
the limitations of the measurement device. Since professional power
measurement devices are expensive, we decided not to purchase one and
instead use a regular socket power meter. Because of that, we had to choose a
more accurate measurement that this device presented - current. Ideally, one
would use a high-grade measurement device to assess how much power our
solution dissipates when conducting tests with various parameter values.

Conclusions and future work | 55

6.3 Future work
The idea to accelerate packet capturing in an embedded system was
spontaneous and was chosen as the project topic after empirical study alone.
In the future, it would be beneficial to have tools that propose which parts of
the code could be offloaded to an external accelerator. Of course, this is a very
complex topic, but since there are already HLS compilers, the way ahead is
already being slowly opened.

6.3.1 What has been left undone?
Due to time shortages in the final stages of the project and non-trivial changes
required to implement it, an interesting parameter is not tested - bus width.
Setting this width to a greater value allows for transferring more data in a single
burst and could have a big impact on performance and should be researched
further.

Also, tests probing when an increase in burst length hinders the
performance would have much scientific value for future implementors of
similar solutions.

The XDP program used for steering the driver to offload the packets to
FPGA only returns a value and does not perform any additional processing.
Initially, it was meant to perform some early filtering of the packets and capture
just the ones matching a particular filter. This had to be left undone as the scope
of the project proved to be greater than expected.

Also, another functionality that could be done in the FPGA was not
implemented, despite initial plans for the project to imitate the tcpdump
program and support various filtering options that could be realized by the
RTL code.

Testing the solution on a target board having low-power consumption
capabilities would assert how does it fare against a CPU-only capturing which
uses sleep states.

6.3.2 Next obvious things to be done
The bus width parametrization should be implemented for easier customiza-
tion of the project and to add a degree of freedom for testing. It would also
allow for a better performance during stress-testing the system with packet
floods and potentially reduce power consumption.

56 | Conclusions and future work

Supporting a variable bus width in the module itself is equally important as
transferring the solution to the FPGA2SDRAM bridge and debugging issues
that prevented it from waking up. Moving to this bridge would remove the
interconnect logic that was added to accommodate for differences between
AXI and Avalon, reducing the logic requirements of the solution even further.

Since the project was written to be extensible, the RTL code allows for easy
integrations of additional packet processing functionalities that could be done
after the packet is received and before it is placed in the SDRAM buffer. An
example of such functionality is packet filtering by classification or simple rule
matching. Such implementations are not trivial but they are surely possible
thanks to having a FIFO that essentially stores some data before it leaves the
module.

As the project is modular, it could be used for egress packet capturing as
well. Doing so would require some integrations in the kernel driver and a
slightly different approach as to where hook the FPGA since the Linux kernel
currently does not support egress XDP. No big changes would be necessary in
the FPGA code though.

6.4 Reflections
As already mentioned in the section 1.8, every scientific project should
contribute towards a better tomorrow. Even though this research concerns
itself with a topic that is not directly related to human well-being, it still
benefited the embedded systems computer science domain. Thanks to no
total net increase in power consumption when running the FPGA code,
the project proves that particular problems can and should be offloaded to
hardware accelerators. As mentioned in 6.3, a step forward that would
contribute towards environmental progress would be devising models capable
of suggesting which parts of the code executed on the CPU could be
accelerated. In the case of this project, this includes the creation of a
processing solution that would decrease the power consumption of De0-Nano
SoC. Even though this is a highly specialized solution, it proves that efficient
utilization of a hardware accelerator is beneficial at times, both in performance
and power consumption gains.

References | 57

References

[1] Internet of Things statistics for 2022 - Taking Things Apart. Dataprot.
[Online]. Available: https://dataprot.net/statistics/iot-statistics/ [Page 1.]

[2] R. Mahmoud, T. Yousuf, F. Aloul, and I. Zualkernan, “Internet of things
(IoT) security: Current status, challenges and prospective measures,” in
2015 10th International Conference for Internet Technology and Secured
Transactions (ICITST), 2015. doi: 10.1109/ICITST.2015.7412116 pp.
336–341. [Page 1.]

[3] A. Pekar, J. Mocnej, W. K. G. Seah, and I. Zolotova, “Application
Domain-Based Overview of IoT Network Traffic Characteristics,” ACM
Comput. Surv., vol. 53, no. 4, jul 2020. doi: 10.1145/3399669. [Online].
Available: https://doi.org/10.1145/3399669 [Page 1.]

[4] Wireshark. Wireshark. [Online]. Available: https://www.wireshark.org/
[Page 1.]

[5] S. B. Alias, S. Manickam, and M. M. Kadhum, “A Study on
Packet Capture Mechanisms in Real Time Network Traffic,” in 2013
International Conference on Advanced Computer Science Applications
and Technologies, 2013. doi: 10.1109/ACSAT.2013.95 pp. 456–460.
[Page 2.]

[6] tcpdump. The Tcpdump group. [Online]. Available: https://www.tcpd
ump.org/ [Page 2.]

[7] C. Cascaval, S. Chatterjee, H. Franke, K. J. Gildea, and P. Pattnaik, “A
taxonomy of accelerator architectures and their programming models,”
IBM J. Res. Dev., vol. 54, p. 5, 2010. [Page 3.]

[8] S. Lahti, M. Rintala, and T. D. Hämäläinen, “Leveraging Modern
C++ in High-level Synthesis,” IEEE Transactions on Computer-Aided

https://dataprot.net/statistics/iot-statistics/
https://doi.org/10.1145/3399669
https://www.wireshark.org/
https://www.tcpdump.org/
https://www.tcpdump.org/

58 | References

Design of Integrated Circuits and Systems, pp. 1–1, 2022. doi:
10.1109/TCAD.2022.3193646 [Pages 3 and 5.]

[9] E. Homsirikamol and K. Gaj, “Can high-level synthesis compete against
a hand-written code in the cryptographic domain? a case study,” in 2014
International Conference on ReConFigurable Computing and FPGAs
(ReConFig14), 2014. doi: 10.1109/ReConFig.2014.7032504 pp. 1–8.
[Page 3.]

[10] T. Marc-André, “Two FPGA Case Studies Comparing High Level
Synthesis and Manual HDL for HEP applications,” 2018. [Online].
Available: https://arxiv.org/abs/1806.10672 [Page 3.]

[11] Netronome SmartNIC Overview. Netronome. [Online]. Available:
https://www.netronome.com/products/smartnic/overview/ [Pages 3
and 16.]

[12] packagecloud. Illustrated Guide to Monitoring and Tuning the
Linux Networking Stack: Receiving Data | Packagecloud Blog.
packagecloud.io. [Online]. Available: https://blog.packagecloud.io/illus
trated-guide-monitoring-tuning-linux-networking-stack-receiving-data
/ [Page 4.]

[13] ——. Monitoring and Tuning the Linux Networking Stack: Receiving
Data | Packagecloud Blog. packagecloud.io. [Online]. Available:
https://blog.packagecloud.io/monitoring-tuning-linux-networking-stac
k-receiving-data/ [Page 4.]

[14] ——. Monitoring and Tuning the Linux Networking Stack: Sending
Data | Packagecloud Blog. [Online]. Available: https://blog.packageclou
d.io/monitoring-tuning-linux-networking-stack-sending-data/ [Page 4.]

[15] G. Borello. The art of writing eBPF programs: A primer. Sysdig.
[Online]. Available: https://sysdig.com/blog/the-art-of-writing-ebpf-pr
ograms-a-primer/ [Page 4.]

[16] How to Receive a Million Packets per Second. The Cloudflare Blog.
[Online]. Available: http://blog.cloudflare.com/how-to-receive-a-milli
on-packets/ [Page 4.]

[17] BPF and XDP Reference Guide — Cilium 1.10.8 documentation.
[Online]. Available: https://docs.cilium.io/en/v1.10/bpf/ [Page 4.]

https://arxiv.org/abs/1806.10672
https://www.netronome.com/products/smartnic/overview/
https://blog.packagecloud.io/illustrated-guide-monitoring-tuning-linux-networking-stack-receiving-data/
https://blog.packagecloud.io/illustrated-guide-monitoring-tuning-linux-networking-stack-receiving-data/
https://blog.packagecloud.io/illustrated-guide-monitoring-tuning-linux-networking-stack-receiving-data/
https://blog.packagecloud.io/monitoring-tuning-linux-networking-stack-receiving-data/
https://blog.packagecloud.io/monitoring-tuning-linux-networking-stack-receiving-data/
https://blog.packagecloud.io/monitoring-tuning-linux-networking-stack-sending-data/
https://blog.packagecloud.io/monitoring-tuning-linux-networking-stack-sending-data/
https://sysdig.com/blog/the-art-of-writing-ebpf-programs-a-primer/
https://sysdig.com/blog/the-art-of-writing-ebpf-programs-a-primer/
http://blog.cloudflare.com/how-to-receive-a-million-packets/
http://blog.cloudflare.com/how-to-receive-a-million-packets/
https://docs.cilium.io/en/v1.10/bpf/

References | 59

[18] bcc - BPF compiler collection. iovisor. [Online]. Available: https:
//github.com/iovisor/bcc [Page 6.]

[19] A thorough introduction to bpftrace. Brendan Gregg. [Online].
Available: https://www.brendangregg.com/blog/2019-08-19/bpftr
ace.html [Page 6.]

[20] FPGA based hardware accelerator for musical synthesis for Linux
system. Jakub Duchniewicz. [Online]. Available: https://jduchniewicz.c
om/FPGA-synth.pdf [Page 6.]

[21] W. Kim, S. Kim, and H. Lim, “Malicious Data Frame Injection
Attack Without Seizing Association in IEEE 802.11 Wireless LANs,”
IEEE Access, vol. 9, pp. 16 649–16 660, 2021. doi: 10.1109/AC-
CESS.2021.3054130 [Page 10.]

[22] M. Qasaimeh, K. Denolf, J. Lo, K. Vissers, J. Zambreno, and
P. H. Jones, “Comparing Energy Efficiency of CPU, GPU and FPGA
Implementations for Vision Kernels,” in 2019 IEEE International
Conference on Embedded Software and Systems (ICESS), 2019. doi:
10.1109/ICESS.2019.8782524 pp. 1–8. [Page 11.]

[23] A. Ramaswami, T. Kenter, T. D. Kühne, and C. Plessl, “Evaluating
the Design Space for Offloading 3D FFT Calculations to an FPGA for
High-Performance Computing,” in Applied Reconfigurable Computing.
Architectures, Tools, and Applications, S. Derrien, F. Hannig, P. C.
Diniz, and D. Chillet, Eds. Cham: Springer International Publishing,
2021. ISBN 978-3-030-79025-7 pp. 285–294. [Pages 11 and 51.]

[24] R. Dick, G. Lakshminarayana, A. Raghunathan, and N. Jha, “Analysis
of power dissipation in embedded systems using real-time operating
systems,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 22, no. 5, pp. 615–627, 2003. doi:
10.1109/TCAD.2003.810745 [Page 14.]

[25] A. Agarwal, S. Rajput, and A. S. Pandya, “Power Management
System for Embedded RTOS: An Object Oriented Approach,” in 2006
Canadian Conference on Electrical and Computer Engineering, 2006.
doi: 10.1109/CCECE.2006.277310 pp. 2305–2309. [Page 14.]

[26] F. Bennett, D. Clarke, J. Evans, A. Hopper, A. Jones, and
D. Leask, “Piconet: embedded mobile networking,” IEEE Personal

https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://www.brendangregg.com/blog/2019-08-19/bpftrace.html
https://www.brendangregg.com/blog/2019-08-19/bpftrace.html
https://jduchniewicz.com/FPGA-synth.pdf
https://jduchniewicz.com/FPGA-synth.pdf

60 | References

Communications, vol. 4, no. 5, pp. 8–15, 1997. doi: 10.1109/98.626977
[Page 14.]

[27] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler, TinyOS:
An Operating System for Sensor Networks. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 115–148. ISBN 978-3-540-
27139-0. [Online]. Available: https://doi.org/10.1007/3-540-27139-2_7
[Page 14.]

[28] Z. Shelby, P. Mahonen, J. Riihijarvi, O. Raivio, and P. Huuskonen,
“NanoIP: the zen of embedded networking,” in IEEE International
Conference on Communications, 2003. ICC ’03., vol. 2, 2003. doi:
10.1109/ICC.2003.1204570 pp. 1218–1222 vol.2. [Page 14.]

[29] K. S. J. Pister, J. M. Kahn, and B. E. Boser, “Smart dust: Wireless
networks of millimeter-scale sensor nodes.” in 1999 Electronics
Research Laboratory Research Summary, 1999. [Page 14.]

[30] O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes, “Operating Systems
for Low-End Devices in the Internet of Things: A Survey,” IEEE
Internet of Things Journal, vol. 3, no. 5, pp. 720–734, 2016. doi:
10.1109/JIOT.2015.2505901 [Page 14.]

[31] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - A Lightweight and
Flexible Operating System for Tiny Networked Sensors,” in Proceedings
of the 29th Annual IEEE International Conference on Local Computer
Networks, ser. LCN ’04. USA: IEEE Computer Society, 2004.
doi: 10.1109/LCN.2004.38. ISBN 0769522602 p. 455–462. [Online].
Available: https://doi.org/10.1109/LCN.2004.38 [Page 14.]

[32] R. Barry, FreeRTOS reference manual: API functions and configuration
options. Real Time Engineers Limited, 2009. [Page 14.]

[33] E. Baccelli, O. Hahm, M. Günes, M. Wählisch, and T. C. Schmidt,
“RIOT OS: Towards an OS for the Internet of Things,” in 2013 IEEE
Conference on Computer Communications Workshops (INFOCOM
WKSHPS), 2013. doi: 10.1109/INFCOMW.2013.6970748 pp. 79–80.
[Page 14.]

[34] Zephyr Project. The Linux Foundation. [Online]. Available: https:
//www.zephyrproject.org/ [Page 14.]

https://doi.org/10.1007/3-540-27139-2_7
https://doi.org/10.1109/LCN.2004.38
https://www.zephyrproject.org/
https://www.zephyrproject.org/

References | 61

[35] J. J. Patoliya and M. M. Desai, “Face detection based ATM
security system using embedded Linux platform,” in 2017 2nd
International Conference for Convergence in Technology (I2CT), 2017.
doi: 10.1109/I2CT.2017.8226097 pp. 74–78. [Page 15.]

[36] M. Åsberg, T. Nolte, M. Joki, J. Hogbrink, and S. Siwani, “Fast Linux
bootup using non-intrusive methods for predictable industrial embedded
systems,” in 2013 IEEE 18th Conference on Emerging Technologies &
Factory Automation (ETFA), 2013. doi: 10.1109/ETFA.2013.6648027
pp. 1–8. [Page 15.]

[37] H. Guo, Z. Wang, and X. Wang, “Transplant of Linux and Embedded
System of Boot Loader and LED Driver,” in 2010 International
Conference on Machine Vision and Human-machine Interface, 2010.
doi: 10.1109/MVHI.2010.118 pp. 733–736. [Page 15.]

[38] D. Hart, J. Stultz, and T. Ts’o, “Real-time Linux in real time,”
IBM Systems Journal, vol. 47, no. 2, pp. 207–220, 2008. doi:
10.1147/sj.472.0207 [Page 15.]

[39] L.-C. Duca and A. Duca, “Achieving Hard Real-Time Networking on
PREEMPT_RT Linux with RTnet,” in 2020 International Symposium
on Fundamentals of Electrical Engineering (ISFEE), 2020. doi:
10.1109/ISFEE51261.2020.9756165 pp. 1–4. [Page 15.]

[40] The Buildroot User Manual. [Online]. Available: https://buildroot.org/
downloads/manual/manual.html#rebuild-pkg [Pages 15 and 38.]

[41] Yocto Project. Yocto Project. [Online]. Available: https://www.yoctop
roject.org/ [Page 15.]

[42] Arduino MKR Vidor 4000. Arduino. [Online]. Available: https:
//store.arduino.cc/products/arduino-mkr-vidor-4000 [Page 16.]

[43] I.-S. Yoon, S.-H. Chung, and J.-S. Kim, “Implementation of Lightweight
TCP/IP for Small, Wireless Embedded Systems,” in 2009 International
Conference on Advanced Information Networking and Applications,
2009. doi: 10.1109/AINA.2009.53 pp. 965–970. [Page 16.]

[44] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
Click Modular Router,” ACM Trans. Comput. Syst., vol. 18, no. 3, p.
263–297, aug 2000. doi: 10.1145/354871.354874. [Online]. Available:
https://doi.org/10.1145/354871.354874 [Page 17.]

https://buildroot.org/downloads/manual/manual.html#rebuild-pkg
https://buildroot.org/downloads/manual/manual.html#rebuild-pkg
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://store.arduino.cc/products/arduino-mkr-vidor-4000
https://store.arduino.cc/products/arduino-mkr-vidor-4000
https://doi.org/10.1145/354871.354874

62 | References

[45] DPDK. DPDK. [Online]. Available: https://www.dpdk.org/ [Page 17.]

[46] H. Zhang, Z. Chen, and Y. Yuan, “High-Performance UPF Design Based
on DPDK,” in 2021 IEEE 21st International Conference on Communica-
tion Technology (ICCT), 2021. doi: 10.1109/ICCT52962.2021.9657903
pp. 349–354. [Page 17.]

[47] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, “GPU Computing,” Proceedings of the IEEE, vol. 96, no. 5, pp.
879–899, 2008. doi: 10.1109/JPROC.2008.917757 [Page 17.]

[48] NVIDIA, P. Vingelmann, and F. H. Fitzek, “CUDA,” 2022. [Online].
Available: https://developer.nvidia.com/cuda-toolkit [Page 17.]

[49] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative Style, High-
Performance Deep Learning Library,” in Advances in Neural Information
Processing Systems 32. Curran Associates, Inc., 2019, pp. 8024–8035.
[Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-an-im
perative-style-high-performance-deep-learning-library.pdf [Page 17.]

[50] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), 2016, pp. 265–283.
[Page 17.]

[51] Google, “TPU,” 2022. [Online]. Available: https://cloud.google.com/t
pu/ [Page 17.]

[52] Khronos, “OpenCL,” 2022. [Online]. Available: https://www.khronos.
org/opencl/ [Page 17.]

[53] Y. Go, M. Jamshed, Y. Moon, C. Hwang, and K. Park, “APUNet:
Revitalizing GPU as Packet Processing Accelerator,” in Proceedings
of the 14th USENIX Conference on Networked Systems Design and
Implementation, ser. NSDI’17. USA: USENIX Association, 2017.
ISBN 9781931971379 p. 83–96. [Pages 17 and 18.]

[54] GPGPU with GLES. Jakub Duchniewicz. [Online]. Available: https:
//github.com/JDuchniewicz/GPGPU-with-GLES [Page 17.]

https://www.dpdk.org/
https://developer.nvidia.com/cuda-toolkit
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://github.com/JDuchniewicz/GPGPU-with-GLES
https://github.com/JDuchniewicz/GPGPU-with-GLES

References | 63

[55] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: A GPU-
Accelerated Software Router,” SIGCOMM Comput. Commun. Rev.,
vol. 40, no. 4, p. 195–206, aug 2010. doi: 10.1145/1851275.1851207.
[Online]. Available: https://doi.org/10.1145/1851275.1851207
[Page 18.]

[56] A. Boutros and V. Betz, “FPGA Architecture: Principles and
Progression,” IEEE Circuits and Systems Magazine, vol. 21, no. 2, pp.
4–29, 2021. doi: 10.1109/MCAS.2021.3071607 [Page 18.]

[57] P. Possa, D. Schaillie, and C. Valderrama, “FPGA-based hardware
acceleration: A CPU/accelerator interface exploration,” in 2011 18th
IEEE International Conference on Electronics, Circuits, and Systems,
2011. doi: 10.1109/ICECS.2011.6122291 pp. 374–377. [Pages 18, 26,
and 51.]

[58] F. O’Brien, M. Agostini, and T. S. Abdelrahman, “A Streaming
Accelerator for Heterogeneous CPU-FPGA Processing of
Graph Applications,” in 2021 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), 2021. doi:
10.1109/IPDPSW52791.2021.00014 pp. 26–35. [Pages 18 and 26.]

[59] FlexRAN. Intel. [Online]. Available: https://www.intel.com/conten
t/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html
[Page 18.]

[60] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh,
M. Andrewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung, H. K.
Chandrappa, S. Chaturmohta, M. Humphrey, J. Lavier, N. Lam, F. Liu,
K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel, T. Sapre, M. Shaw,
G. Silva, M. Sivakumar, N. Srivastava, A. Verma, Q. Zuhair, D. Bansal,
D. Burger, K. Vaid, D. A. Maltz, and A. Greenberg, “Azure Accelerated
Networking: SmartNICs in the Public Cloud,” in Proceedings of
the 15th USENIX Conference on Networked Systems Design and
Implementation, ser. NSDI’18. USA: USENIX Association, 2018.
ISBN 9781931971430 p. 51–64. [Page 18.]

[61] W. Jiang and V. K. Prasanna, “A FPGA-based Parallel Architecture
for Scalable High-Speed Packet Classification,” in 2009 20th IEEE
International Conference on Application-specific Systems, Architectures
and Processors, 2009. doi: 10.1109/ASAP.2009.17 pp. 24–31.
[Page 18.]

https://doi.org/10.1145/1851275.1851207
https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html
https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html

64 | References

[62] S. Zhou, Y. R. Qu, and V. K. Prasanna, “Large-scale packet classification
on FPGA,” in 2015 IEEE 26th International Conference on Application-
specific Systems, Architectures and Processors (ASAP), 2015. doi:
10.1109/ASAP.2015.7245738 pp. 226–233. [Page 18.]

[63] M. S. Abdelfattah, A. Bitar, and V. Betz, “Design and Applica-
tions for Embedded Networks-on-Chip on FPGAs,” IEEE Transac-
tions on Computers, vol. 66, no. 6, pp. 1008–1021, 2017. doi:
10.1109/TC.2016.2621045 [Page 19.]

[64] M. Attig and G. Brebner, “400 Gb/s Programmable Packet Parsing
on a Single FPGA,” in 2011 ACM/IEEE Seventh Symposium on
Architectures for Networking and Communications Systems, 2011. doi:
10.1109/ANCS.2011.12 pp. 12–23. [Page 19.]

[65] D. Cerović, V. Del Piccolo, A. Amamou, K. Haddadou, and
G. Pujolle, “Fast Packet Processing: A Survey,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 4, pp. 3645–3676, 2018. doi:
10.1109/COMST.2018.2851072 [Page 19.]

[66] R. Duarte, C. Liu, and X. Niu, “RSA Cryptography Acceleration for
Embedded System,” 2010. [Page 19.]

[67] C.-L. Su, C.-Y. Tsui, and A. Despain, “Saving power in the control path
of embedded processors,” IEEE Design & Test of Computers, vol. 11,
no. 4, pp. 24–31, 1994. doi: 10.1109/54.329448 [Page 19.]

[68] B. Moyer, “Low-power design for embedded processors,” Proceedings of
the IEEE, vol. 89, no. 11, pp. 1576–1587, 2001. doi: 10.1109/5.964439
[Page 19.]

[69] N. Maruyama, T. Ishihara, and H. Yasuura, “An RTOS in hardware
for energy efficient software-based TCP/IP processing,” Application
Specific Processors, Symposium on, vol. 0, pp. 58–63, 06 2010. doi:
10.1109/SASP.2010.5521147 [Page 19.]

[70] T. Gomes, F. Salgado, S. Pinto, J. Cabral, and A. Tavares, “Towards
an FPGA-based network layer filter for the Internet of Things
edge devices,” in 2016 IEEE 21st International Conference on
Emerging Technologies and Factory Automation (ETFA), 2016. doi:
10.1109/ETFA.2016.7733684 pp. 1–4. [Page 20.]

References | 65

[71] M. Silva, T. Gomes, and S. Pinto, “Agnostic Hardware-
Accelerated Operating System for Low-End IoT,” 08 2022. doi:
10.1109/RTCSA55878.2022.00009 [Page 20.]

[72] P. P. Czapski and A. Sluzek, “Experiments on data processing
algorithms: Energy efficiency of wireless and untethered Field
Programmable Gate Array (FPGA)-based embedded systems,” in
2008 International Conference on Electronic Design, 2008. doi:
10.1109/ICED.2008.4786635 pp. 1–8. [Page 20.]

[73] X. Ding and J. Wu, “Study on Energy Consumption Optimization
Scheduling for Internet of Things,” IEEE Access, vol. 7, pp. 70 574–
70 583, 2019. doi: 10.1109/ACCESS.2019.2919769 [Page 20.]

[74] N. Paulino, J. a. C. Ferreira, and J. a. M. P. Cardoso, “Improving
Performance and Energy Consumption in Embedded Systems via
Binary Acceleration: A Survey,” ACM Comput. Surv., vol. 53,
no. 1, feb 2020. doi: 10.1145/3369764. [Online]. Available: https:
//doi.org/10.1145/3369764 [Page 20.]

[75] PCAP Capture File Format. The tcpdump group. [Online]. Available:
https://www.ietf.org/archive/id/draft-gharris-opsawg-pcap-01.html
[Page 20.]

[76] libpcap. The tcpdump group. [Online]. Available: https://github.com/t
he-tcpdump-group/libpcap [Page 20.]

[77] Altera De0-Nano SoC GHRD. Altera. [Online]. Available: https:
//www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&Cat
egoryNo=167&No=941 [Page 31.]

[78] Avalon MM Specification. Intel. [Online]. Available: https://www.intel.
com/content/www/us/en/docs/programmable/683091/20-1/introduction
-to-the-interface-specifications.html [Page 32.]

[79] Building a Skid Buffer for AXI processing. The ZipCPU by Gisselquist
Technology. [Online]. Available: https://zipcpu.com/blog/2019/05/22/s
kidbuffer.html [Page 36.]

[80] uboot fork for SoCFPGA. Altera. [Online]. Available: https://github.c
om/altera-opensource/u-boot-socfpga [Page 38.]

https://doi.org/10.1145/3369764
https://doi.org/10.1145/3369764
https://www.ietf.org/archive/id/draft-gharris-opsawg-pcap-01.html
https://github.com/the-tcpdump-group/libpcap
https://github.com/the-tcpdump-group/libpcap
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=941
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=941
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=941
https://www.intel.com/content/www/us/en/docs/programmable/683091/20-1/introduction-to-the-interface-specifications.html
https://www.intel.com/content/www/us/en/docs/programmable/683091/20-1/introduction-to-the-interface-specifications.html
https://www.intel.com/content/www/us/en/docs/programmable/683091/20-1/introduction-to-the-interface-specifications.html
https://zipcpu.com/blog/2019/05/22/skidbuffer.html
https://zipcpu.com/blog/2019/05/22/skidbuffer.html
https://github.com/altera-opensource/u-boot-socfpga
https://github.com/altera-opensource/u-boot-socfpga

66 | References

[81] Linux Kernel fork for SoCFPGA. Altera. [Online]. Available: https:
//github.com/altera-opensource/linux-socfpga [Page 38.]

https://github.com/altera-opensource/linux-socfpga
https://github.com/altera-opensource/linux-socfpga

Appendix A: Major obstacles faced | 67

Appendix A

Major obstacles faced

No project is without its issues and time-consuming nasty bugs. In the case of
this project, probably the most irksome and time-wasting was our inability
to get the fpga2sdram bridges up and running. Having perused every
resource available on the internet up to this day, invoked bootloader scripts that
would set proper values in registers, and even switched software versions to
accommodate for any possible changes we still were not able to get it running.
This created a major delay after which we decided to use regular bridges using
the AXI protocol and lose some width (256 bits to 128 reduction). After this
change, we were finally able to see the data being transferred between FPGA
and RAM.

We also encountered some bugs in our initial erroneous implementation
of write control where write and waitrequest signals could come at
various times and cause unexpected states to be present in our logic. This was
alleviated by implementing a counter for packet transmission in addition to
regular burst segment counting logic. Changes in this area caused yet another
bug with hanging bus and board hanging in seemingly unrelated places. It
turned out that the interconnect would sometimes erroneously translate our
burst count requests, causing the bus to wait on a pending transfer when the
FPGA code was already done. Since the bus controller was waiting for a
transaction it blocked other accesses to SDRAM and due to popular demand
for this peripheral, other components of the system crashed with timeouts. A
solution to this problem was switching from specifying burst lengths in bytes
to words.

Some other major time-consuming issues were related to getting the eBPF
support on the board alongside the necessary userspace applications that were
capable of loading the XDP programs. Choosing a proper kernel version was

68 | Appendix A: Major obstacles faced

crucial, as XDP support was added only after kernel 4.8 and as mentioned
previously efficient execution of these programs requires JIT compilation
which also requires a fairly new kernel. Additionally, it turned out that we
had to add a newer version of iptables2 than Buildroot initially provided
that we ultimately chose for loading the XDP program.

Finally, understanding the Ethernet kernel driver to discover which parts
have most relevance to our problem, and properly integrating our code proved
to be quite a demanding task. We spent significant time making sense why
packets would not be passed from kernel to the FPGA only to discover that the
addresses that arrive along with the xdp struct were virtual and not physical.

Appendix B: Write control code listing | 69

Appendix B

Write control code listing

1 module wr_ctrl
2 #(parameter BURST_SIZE_WORDS = 4)
3 (input logic clk,
4 input logic reset,
5 input logic wr_ctrl,
6 input logic empty,
7 input logic [31:0] fifo_out,
8 output logic rd_from_fifo,
9 output logic wr_ctrl_rdy,

10 input logic [31:0] control,
11 input logic [31:0] pkt_begin,
12 input logic [31:0] pkt_end,
13 input logic [31:0] capt_buf_start,
14 input logic [31:0] capt_buf_size,
15 input logic [8:0] usedw,
16 input logic [31:0] seconds,
17 input logic [31:0] nanoseconds,
18 output logic [31:0] last_write_addr,
19 output logic capt_buf_wrap,
20 // avalon (host)master signals
21 output logic [31:0] address,
22 output logic [31:0] writedata,
23 output logic write,
24 output logic [15:0] burstcount,
25 input logic waitrequest
26);
27

28 enum logic [2:0] { IDLE, PREP, WR_TIMESTAMP, WR_PKT_DATA,
DONE } state, state_next;

29

30 logic [31:0] reg_control, reg_pkt_begin, reg_pkt_end,

70 | Appendix B: Write control code listing

31 reg_capt_buf_start, reg_capt_buf_size;
32 logic done_reading, start_transfer, first_transaction;
33

34 logic [15:0] total_burst_remaining,
35 burst_segment_remaining_count,
36 total_size, BYTES_IN_BURST,
37 burstsize_in_words, WORD_SIZE;
38

39 logic [31:0] bytes_to_buf_end;
40

41 logic [31:0] capt_buf_end;
42

43 logic [15:0] burst_size;
44 logic burst_start, burst_end, first_burst_wait_fifo_fill;
45 logic skbf1_valid, skbf2_valid, tx_accept, skbf1_ready,

skbf2_ready;
46 logic [31:0] timestamp_pkt_reg;
47

48 logic [31:0] int_address, int_writedata, fifo_out_d;
49 logic [15:0] int_burstcount;
50 logic int_write;
51 logic [79:0] skbf1_in_data, skbf2_in_data, skbf2_out_data;
52 logic skbf1_data_valid;
53

54 logic [2:0] timestamp_pkt_cnt;
55

56 logic [15:0] tx_accept_counter;
57

58 assign WORD_SIZE = ’d4;
59 assign BYTES_IN_BURST = BURST_SIZE_WORDS * WORD_SIZE;
60

61 // constant assignments for bytes to words conversion
required by

62 // interconnect
63 assign capt_buf_end = reg_capt_buf_start + reg_capt_buf_size;
64 assign bytes_to_buf_end = first_transaction ? capt_buf_end -

capt_buf_start : capt_buf_end - last_write_addr;
65

66 assign burstsize_in_words = burst_size[15:2] + (burst_size
[1:0] !== ’h0); // $ceil(burst_size/4.0)

67

68 assign total_size = (reg_pkt_end - reg_pkt_begin);
69

70 assign tx_accept = write && !waitrequest;
71

72 assign timestamp_pkt_reg = (timestamp_pkt_cnt == ’d4) ?
seconds :

Appendix B: Write control code listing | 71

73 ((timestamp_pkt_cnt == ’d3) ?
nanoseconds : total_size);

74

75 assign skbf1_in_data[79:32] = { int_address, int_burstcount
};

76 assign skbf1_in_data[31:0] = (state == WR_TIMESTAMP) ?
timestamp_pkt_reg : int_writedata;

77

78 assign skbf1_data_valid = (state == WR_TIMESTAMP) ?
timestamp_pkt_cnt !== ’0 : int_write;

79

80 assign int_writedata = skbf1_ready ? fifo_out : fifo_out_d;
81

82 // Avalon MM interface signals
83 assign write = skbf2_valid;
84 assign address = skbf2_out_data[79:48];
85 assign burstcount = skbf2_out_data[47:32];
86 assign writedata = skbf2_out_data[31:0];
87

88 assign wr_ctrl_rdy = done_reading;
89

90 skidbuffer #(
91 .DW(80),
92 .OPT_INITIAL(0),
93 .OPT_OUTREG(0)
94)
95 skbf1 (
96 .i_clk(clk),
97 .i_reset(~reset),
98 // Left
99 .i_valid(skbf1_data_valid),

100 .o_ready(skbf1_ready),
101 .i_data(skbf1_in_data),
102 // Right
103 .o_valid(skbf1_valid),
104 .i_ready(skbf2_ready),
105 .o_data(skbf2_in_data)
106),
107

108 skbf2 (
109 .i_clk(clk),
110 .i_reset(~reset),
111 // Left
112 .i_valid(skbf1_valid),
113 .o_ready(skbf2_ready),
114 .i_data(skbf2_in_data),
115 // Right

72 | Appendix B: Write control code listing

116 .o_valid(skbf2_valid),
117 .i_ready(!waitrequest),
118 .o_data(skbf2_out_data)
119);
120

121

122 always_ff @(posedge clk) begin : states
123 if (!reset) begin
124 state <= IDLE;
125 end
126 else begin
127 state <= state_next;
128 end
129 end
130

131 always_comb begin : fsm
132 case (state)
133 IDLE: begin
134 if (wr_ctrl) begin
135 state_next = PREP;
136 end
137 else begin
138 state_next = IDLE;
139 end
140 end
141

142 PREP: begin
143 state_next = WR_TIMESTAMP;
144 end
145

146 WR_TIMESTAMP: begin
147 if (burst_end && timestamp_pkt_cnt == ’0)

begin
148 state_next = WR_PKT_DATA;
149 end
150 else begin
151 state_next = WR_TIMESTAMP;
152 end
153 end
154

155 WR_PKT_DATA: begin
156 if (done_reading) begin
157 state_next = DONE;
158 end
159 else begin
160 state_next = WR_PKT_DATA;
161 end

Appendix B: Write control code listing | 73

162 end
163

164 DONE: begin
165 state_next = IDLE;
166 end
167 endcase
168 end
169

170 always_ff @(posedge clk) begin : avalon_mm_ctrl
171 if (!reset) begin
172 int_address <= ’0;
173 int_burstcount <= ’0;
174 int_write <= ’0;
175 first_transaction <= ’1; // should be done on

register writing
176 capt_buf_wrap <= ’b0;
177 end
178 else begin
179 if (start_transfer && first_transaction) begin
180 // this is start of every packet, it will overwrite,
181 // flag for resetting last_write_addr
182 int_address <= reg_capt_buf_start;
183 first_transaction <= ’0;
184 end
185 else if (burst_end) begin
186 if (int_address + burst_size >= capt_buf_end)

begin
187 int_address <= reg_capt_buf_start;
188 capt_buf_wrap <= ’b1;
189 end
190 else begin
191 int_address <= int_address + burst_size;
192 end
193 if (total_burst_remaining > burst_size) begin
194 if (int_address + 2 * burst_size >=

capt_buf_end) begin
195 last_write_addr <= reg_capt_buf_start;
196 end
197 else begin
198 last_write_addr <= int_address + 2 *

burst_size;
199 end
200 end
201 else begin
202 last_write_addr <= int_address + burst_size;
203 end
204 end

74 | Appendix B: Write control code listing

205

206 if (start_transfer) begin // TODO: check if proper
207 int_burstcount <= ’h4; // timestamp
208 end
209 else if (burst_start) begin
210 int_burstcount <= burstsize_in_words;
211 end
212

213 if (state == WR_PKT_DATA) begin
214 if (rd_from_fifo) begin
215 // arm int_write if there was a FIFO read
216 // in previous CC (data to be sent)
217 int_write <= ’b1;
218 end
219 else if (skbf1_ready) begin
220 // clear int_write if the last word
221 // has been accepted by skbf1
222 // (rd_from_fifo is already down)
223 int_write <= ’b0;
224 end
225 end else begin
226 int_write <= ’b0;
227 end
228 end
229 end
230

231 always_ff @(posedge clk) begin : start_ctrl
232 if (!reset) begin
233 reg_control <= ’0;
234 reg_pkt_begin <= ’0;
235 reg_pkt_end <= ’0;
236 reg_capt_buf_start <= ’0;
237 reg_capt_buf_size <= ’0;
238 end
239

240 start_transfer <= ’b0;
241

242 if (state == IDLE && state_next == PREP) begin
243 start_transfer <= ’b1;
244 reg_control <= control;
245 reg_pkt_begin <= pkt_begin;
246 reg_pkt_end <= pkt_end;
247 reg_capt_buf_start <= capt_buf_start;
248 reg_capt_buf_size <= capt_buf_size;
249 end
250 end
251

Appendix B: Write control code listing | 75

252 always_ff @(posedge clk) begin : avalon_mm_tx
253 if (!reset) begin
254 first_burst_wait_fifo_fill <= ’b0;
255 total_burst_remaining <= ’0;
256 burst_segment_remaining_count <= ’0;
257 timestamp_pkt_cnt <= ’0;
258 tx_accept_counter <= ’0;
259 end
260 else begin
261 /****************************/
262 /* Set the total burst length
263 at the start of a packet
264 /****************************/
265 if (start_transfer) begin
266 total_burst_remaining <= total_size + ’d16;
267 first_burst_wait_fifo_fill <= ’b1;
268 timestamp_pkt_cnt <= ’d4; // seconds, nanoseconds

, pkt_len x2
269 end
270 else if (burst_end) begin
271 total_burst_remaining <= total_burst_remaining -
272 (total_burst_remaining < BYTES_IN_BURST ?
273 total_burst_remaining : burst_size);
274 end
275

276 /*****************************/
277 /* Mark the start of a burst */
278 /*****************************/
279 burst_start <= ’b0;
280

281 if (start_transfer) begin
282 burst_start <= ’b1;
283 burst_size <= (bytes_to_buf_end < BYTES_IN_BURST

?
284 bytes_to_buf_end : BYTES_IN_BURST

);
285 // first burst is a timestamp
286 end
287

288 if (state == WR_TIMESTAMP &&
289 burst_end &&
290 timestamp_pkt_cnt > ’0) begin // don’t mix with

data
291 burst_start <= ’b1;
292 burst_size <= timestamp_pkt_cnt * WORD_SIZE;
293 end
294 else if ((state == WR_PKT_DATA &&

76 | Appendix B: Write control code listing

295 (first_burst_wait_fifo_fill && usedw >=
BURST_SIZE_WORDS)) ||

296 (!first_burst_wait_fifo_fill && burst_end &&
297 total_burst_remaining > BYTES_IN_BURST))

begin
298 burst_start <= ’b1;
299 first_burst_wait_fifo_fill <= ’b0;
300

301 if (bytes_to_buf_end < BYTES_IN_BURST) begin
302 burst_size <= (total_burst_remaining -

BYTES_IN_BURST < bytes_to_buf_end) ?
303 total_burst_remaining -

BYTES_IN_BURST : bytes_to_buf_end;
304 end
305 else begin
306 burst_size <= (total_burst_remaining -

BYTES_IN_BURST < BYTES_IN_BURST) ?
307 total_burst_remaining -

BYTES_IN_BURST : BYTES_IN_BURST;
308 end
309 end
310

311 /***************************/
312 /* Mark the end of a burst */
313 /***************************/
314 burst_end <= ’b0;
315

316 if (tx_accept_counter <= ’h4
317 && tx_accept_counter > ’h0
318 && tx_accept) begin
319 burst_end <= ’b1;
320 end
321

322 /***
*/

323 /* Count the number of timestamp words put into write stage
*/

324 /***
*/

325 if (state == WR_TIMESTAMP && skbf1_ready &&
326 skbf1_data_valid && timestamp_pkt_cnt != ’0)

begin
327 timestamp_pkt_cnt <= timestamp_pkt_cnt - ’b1;
328 end
329

330 /***/
331 /* Control the number of packet bytes

Appendix B: Write control code listing | 77

332 put into write stage within the current burst
333 /***/
334 if (burst_start) begin
335 burst_segment_remaining_count <= burst_size;
336 end
337 else if ((state == WR_TIMESTAMP && skbf1_ready)
338 || (state == WR_PKT_DATA && rd_from_fifo))

begin
339 if (burst_segment_remaining_count > ’h0) begin
340 if (burst_segment_remaining_count < ’h4)

begin
341 burst_segment_remaining_count <= ’0;
342 end
343 else begin
344 burst_segment_remaining_count <=
345 burst_segment_remaining_count - ’h4;
346 end
347 end
348 end
349

350 /***********************************/
351 /* Control the number of transmitted
352 /* bytes within the current burst
353 /**********************************/
354 if (burst_start) begin
355 tx_accept_counter <= burst_size;
356 end
357 else if (tx_accept && tx_accept_counter > ’0) begin
358 if (tx_accept_counter < ’h4) begin
359 tx_accept_counter <= ’0;
360 end
361 else begin
362 tx_accept_counter <= tx_accept_counter - ’h4;
363 end
364 end
365

366 /****************************/
367 /* Mark the end of a packet */
368 /****************************/
369 done_reading <= ’b0;
370

371 // just trigger it for one cycle
372 if (total_burst_remaining <= BYTES_IN_BURST &&
373 tx_accept_counter === 0 && burst_end) begin
374 done_reading <= ’b1;
375 end
376

78 | Appendix B: Write control code listing

377 /***************************************/
378 /* We need to retain last FIFO output in
379 /* case there is a stall at skbf1 input
380 /***************************************/
381 fifo_out_d <= fifo_out;
382 end
383 end
384

385 always_comb begin : fifo_ctrl
386 rd_from_fifo <= ’0;
387

388 if (state == WR_PKT_DATA && burst_segment_remaining_count
> ’0

389 && !empty && skbf1_ready) begin
390 rd_from_fifo <= ’b1;
391 end
392 end
393 endmodule

Listing B.1: SystemVerilog code for the write control module.

TRITA-EECS-EX- 2022:00

www.kth.se

€€€€ For DIVA €€€€
{
”Author1”: { ”Last name”: ”Duchniewicz”,
”First name”: ”Jakub”,
”E-mail”: ”jakubdu@kth.se”,
”organisation”: {”L1”: ”School of Electrical Engineering and Computer Science”,
}
},
”Cycle”: ”2”,
”Course code”: ”DA258X”,
”Credits”: ”30.0”,
”Degree1”: {”Educational program”: ”Master’s Programme, ICT Innovation, 120 credits”
,”programcode”: ”TIVNM”
,”Degree”: ”Masters degree”
,”subjectArea”: ”Embedded Systems”
},
”Title”: {
”Main title”: ”FPGA accelerated packet capture with eBPF”,
”Subtitle”: ”Performance considerations of using SoC FPGA accelerators for packet capturing.”,
”Language”: ”eng” },
”Alternative title”: {
”Main title”: ”FPGA-accelererad paketfångst med eBPF”,
”Subtitle”: ”Prestandaöverväganden vid användning av SoC FPGA acceleratorer för paketering.”,
”Language”: ”swe”
},
”Supervisor1”: { ”Last name”: ”Pisklak”,
”First name”: ”Sebastian”,
”Local User Id”: ”u100003”,
”E-mail”: ”sebastian.pisklak@tietoevry.com”,
”organisation”: {”L1”: ”School of Electrical Engineering and Computer Science”,
”L2”: ”Computer Science” }
},
”Supervisor2”: { ”Last name”: ”Thilanka Thilakasiri Laddusinghe Badu”,
”First name”: ”Hasini”,
”E-mail”: ”thilanka@kth.se”,
},
”Examiner1”: { ”Last name”: ”Becker”,
”First name”: ”Matthias”,
”Local User Id”: ”u1d13i2c”,
”E-mail”: ”mabecker@kth.se”,
”organisation”: {”L1”: ”School of Electrical Engineering and Computer Science”,
”L2”: ”Computer Science” }
},
”Cooperation”: { ”Partner_name”: ”Tietoevry”},
"National Subject Categories": "10201, 20207",
”Other information”: {”Year”: ”2022”, ”Number of pages”: ”1,79”},
”Series”: { ”Title of series”: ”TRITA-EECS-EX” , ”No. in series”: ”2022:00” },
”Opponents”: { ”Name”: ”L. M. Waller & C. Zhexin”},
”Presentation”: { ”Date”: ”2022-03-15 13:00”
,”Language”:”eng”
,”Room”: ”via Zoom https://kth-se.zoom.us/j/ddddddddddd”
,”Address”: ”Isafjordsgatan 22 (Kistagången 16)”
,”City”: ”Stockholm” },
”Number of lang instances”: "3",
”Abstract[eng]”: €€€€

With the rise of the Internet of Things and the proliferation of embedded devices equipped with an
accelerator arose a need for efficient resource utilization. Hardware acceleration is a complex topic
that requires specialized domain knowledge about the platform and different trade-offs that have to
be made, especially in the area of power consumption. Efficient work offloading strives to reduce or
at least maintain the total power consumption of the system. Offloading packet capturing is usually
done in more powerful devices, hence scarce research is present concerning network packet
acceleration in embedded devices.

The thesis focuses on accelerating networking packets utilizing a Field Programmable Gate Array in an
embedded Linux System. The solution is based on a custom Linux distribution assembled using the
Buildroot tool, specially configured and patched Linux kernel, uboot bootloader, and the programmable
logic for packet acceleration. The system is evaluated on a De0-Nano System on Chip development board
through modifications to burst lengths, packet sizes, and programmable logic clock frequency. Metrics
include packet capturing time, time per packet, and consumed power. Finally, the results are
contrasted with baseline embedded Linux packet processing by inspection of a packet’s path through
the kernel.

Collected results provide a deeper understanding of the packet acceleration problem in embedded
devices and the resultant system gives a solid starting point for possible extensions such as packet
filtering. Key findings include an improvement in packet processing speed as the clock frequency and
burst length are increased while maintaining power consumption. Additionally, the solution performs
better when the packet sizes are above 64 bytes as the overhead of additional logic necessary for

their processing is compensated. The project is also found to be significantly faster than regular in
kernel processing with the caveat of providing just packet capturing whereas Linux contains a full
network stack.

€€€€,
”Keywords[eng]”: €€€€
Field Programmable Gate Array, Acceleration, Networking, Embedded Linux €€€€,
”Abstract[swe]”: €€€€

I och med uppkomsten av sakernas internet och spridningen av inbyggda enheter som är utrustade med en
accelerator har det uppstått ett behov av effektivt resursutnyttjande. Hårdvaruacceleration är ett
komplext ämne som kräver specialiserad domänkunskap om plattformen och olika avvägningar som måste
göras, särskilt när det gäller energiförbrukning. Effektiv arbetsavlastning strävar efter att minska
eller åtminstone bibehålla systemets totala energiförbrukning. Avlastning av paketering sker
vanligtvis i kraftfullare enheter, och därför finns det knappt någon forskning om
nätverksacceleration av paket i inbyggda enheter.

Avhandlingen är inriktad på att påskynda nätverkspaket med hjälp av en Field Programmable Gate Array
i ett inbäddat Linuxsystem. Lösningen bygger på en anpassad Linuxdistribution som sammanställts med
hjälp av verktyget Buildroot, en särskilt konfigurerad och patchad Linuxkärna, uboot bootloader och
den programmerbara logiken för paketacceleration. Systemet utvärderas på ett De0-Nano System on
Chip-utvecklingskort genom ändringar av burstlängder, paketstorlekar och den programmerbara logikens
klockfrekvens. Metrikerna omfattar tid för paketering, tid per paket och förbrukad effekt. Slutligen
jämförs resultaten med grundläggande inbäddad Linux-paketbehandling genom inspektion av paketens väg
genom kärnan.

De samlade resultaten ger en djupare förståelse för problemet med paketacceleration i inbyggda
enheter och det resulterande systemet ger en solid utgångspunkt för möjliga utvidgningar, t.ex.
paketfiltrering. Bland de viktigaste resultaten kan nämnas en förbättring av hastigheten i
paketbehandlingen när klockfrekvensen och burstlängden ökas samtidigt som strömförbrukningen
bibehålls. Dessutom fungerar lösningen bättre när paketstorleken är större än 64 bytes eftersom den
extra logik som krävs för att behandla paketen kompenseras. Projektet har också visat sig vara
betydligt snabbare än vanlig kärnbearbetning, med den reservationen att det bara tillhandahåller
paketupptagning, medan Linux innehåller en fullständig nätverksstack.

€€€€,
”Keywords[swe]”: €€€€
Field Programmable Gate Array, Acceleration, Nätverksarbete, Inbyggd Linux €€€€,
”Abstract[pl]”: €€€€

Rozwój Internetu Rzeczy i ąrosnca śćpopularno systemów wbudowanych ąposiadajcych wbudowany
akcelerator ęsprztowy łsprawiy, że łwzrosa potrzeba na ich efektywne wykorzytanie. Akceleracja
ęsprztowa jest ądziedzin nauki, która wymaga specjalistycznej wiedzy na temat platformy na której ma
ćoperowa oraz wymaga śznajomoci potencjalnych komplikacji które ęsi z ąni ążąwi. Efektywna
akceleracja ma na celu ęredukcj żzuycia energii, a przynajmnniej jej utrzymanie na dotychczasowym
poziomie. Tematyka ta jest śćdo uboga pod ąktem ędostpnej literatury, żgdy zazwyczaj akceleratory
stosowane do sieciowych ąńrozwiza ąs żuywane w ąrozwizaniach serwerowych gdzie ęąwystpuj innego
rodzaju problemy.

W pracy wykorzystany jest akcelerator Field Programmable Gate Array który jest ęśączci łpytki
deweloperskiej De0-Nano System on Chip, gdzie łdziaa łąwspópracujc z wbudowanym systemem Linux, do
którego przygotowania wykorzystano ęnarzdzie Buildroot. Na ńkocowe ąrozwizanie ponadto łskada ęsi
łpoatane ąjdro Linuxa, bootloader uboot oraz programowalna logika ąrealizujca przechwytywanie
pakietów sieciowych. ąRozwizanie poddane jest testom, w których parametry odpowiedzialne za łśćdugo
transakcji typu burst, rozmiaru pakietu oraz ęśczstotliwoci zegara ąs poddawane modyfikacjom. Wyniki
ąs przedstawione za ąpomoc czasu przetwarzania pakietu, czasu per pakiet oraz żzuycia mocy. Do oceny
śefektywnoci ąrozwizania łżłposuyo żtake porównanie z czasem procesowania pakietu w niezmodyfikowanym
systemie Linux

Na podstawie eksperymentów dokonanych w pracy ęwysunite ąs ęąnastpujce wnioski: wraz ze wzrostem
ęśczstotliwoci zegara oraz łśdugoci transakcji burst, czas procesowania pakietów maleje a żzuycie
ąprdu pozostaje na dotychczasowym poziomie. Pakiety o rozmiarze ąprzekraczajcym 64 bajty ąs
procesowane wydajniej w dostarczonym ąrozwizaniu poprzez ękompensacj dodatkowego łnakadu czasu
narzuconego przez ęlogik ąąązarzdzajc przetwarzaniem. System porównano żtake do łzwykego
przetwarzania pakietów ąodbywajcego ęsi w systemie Linux które łokazao ęsi zdecydowanie wolniejsze z
żzastrzeeniem, żi ów system dokonuje łpenego przetworzenia pakietów a ąrozwizanie w pracy jedynie ich
przechwytywania. Projekt stanowi ępodstaw do ewentualnych ńrozszerze, na łprzykad filtrowania
pakietów. Wnioski ęwysunite łżąsu łępogbieniu wiedzy w domenie sieci wbudowanych systemów Linux oraz
ęsprztowej akceleracji.

€€€€,
”Keywords[pl]”: €€€€
Field Programmable Gate Array, sprzętowa akceleracja, sieci internetowe, wbudowany system Linux €€€€,
}

	Introduction
	Structure of the thesis
	Background
	Linux networking overview
	eBPF
	SoC platform overview

	Problem
	Original problem and definition
	Scientific and engineering issues
	Scientific contribution

	Purpose
	Goals
	Research methodology
	Delimitations
	Ethics and sustainability

	Background
	Networking on embedded devices
	IoT OSes
	Linux

	Network packet acceleration
	CPU
	GPU
	FPGA
	NoC

	Constrained devices and power
	.pcap file format
	File header
	Packet header

	Avalon MM protocol
	Read sequence
	Write sequence

	Summary

	Method for packet offloading performance evaluation
	Research process
	Test environment
	Hardware/Software to be used

	Data collection and analysis
	Data collection
	Data analysis

	Implementation
	FPGA design
	Top module, registers and pkt_ctrl
	Read control
	Write control
	Simulation

	Software design
	System preparation
	Kernel driver
	Userspace applications

	Results and analysis
	Major results
	Baseline
	Packet size variation
	Burst length variation
	Clock cycle variation
	Power consumption

	Reliability analysis
	Validity analysis
	Discussion
	Capturing speed
	Power consumption
	Resource utilization

	Conclusions and future work
	Conclusions
	Limitations
	Future work
	What has been left undone?
	Next obvious things to be done

	Reflections

	References
	Major obstacles faced
	Write control code listing

