
Institute of Informatics

in the field of study Computer Science

and specialisation Computer Systems and Networks

FPGA based hardware accelerator for musical

synthesis for Linux system

Jakub Duchniewicz
student record book number 277132

thesis supervisor

dr hab. inż. Wojciech M. Zabołotny

WARSAW 2020

FPGA based hardware accelerator for musical
synthesis for Linux system

Abstract. Work focuses on realizing audio synthesizer in a System on Chip, utilizing FPGA

hardware resources. The resulting sound can be polyphonic and can be played directly

by an analog connection and is returned to the Hard Processor System running Linux

OS. It covers aspects of sound synthesis in hardware and writing Linux Device Drivers

for communicating with the FPGA utilizing DMA. An optimal approach to synthesis is

researched and assessed and LUT-based interpolation is asserted as the best choice for

this project. A novel State Variable IIR Filter is implemented in Verilog and utilized. Four

waveforms are synthesized: sine, square, sawtooth and triangle, and their switching can

be done instantaneously. A sample mixer capable of spreading the overflowing amplitudes

in phase is implemented. Linux Device Driver conforming to the ALSA standard is written

and utilized as a soundcard capable of generating the sound of 24 bits precision at 96kHz

sampling speed in real time. The system is extended with a simple GPIO analog sound

output through 1 pin Sigma-Delta DAC.

Keywords: FPGA, Sound Synthesis, SoC, DMA, SVF

3

Sprzętowy syntezator muzyczny wykorzystujący FPGA
dla systemu Linux

Streszczenie. Celem pracy jest realizacja syntezatora muzycznego na platformie SoC

(System on Chip) z wykorzystaniem zasobów sprzętowych FPGA. Wymagana jest gener-

acja polifonicznego dźwięku, który można odtworzyć w czasie rzeczywistym za pomocą

przetwornika cyfrowo analogowego. Wygenerowany dźwięk jest także przekazywany do

systemu Linux, pracującego na procesorze systemu SoC. W pracy poruszone są zagad-

nienia dotyczące sprzętowej syntezy muzycznej, tworzenia sterownika urządzenia dla

systemu Linux oraz komunikacji z FPGA poprzez DMA. Po zbadaniu szeregu sposobów syn-

tezy, zostaje wybrany system z interpolacją przy użyciu LUT. Zaprojektowany został nowa-

torski filtr zmiennych stanu o nieskończonej odpowiedzi impulsowej, który został zaimple-

mentowany w języku Verilog a następnie użyty jako filtr dolnoprzepustowy. Syntezowane

są cztery przebiegi akustyczne: sinusoidalny, kwadratowy, piłowy oraz trójkątny. Dla wzbo-

gacenia efektów muzycznych możliwe jest ich błyskawiczne przełączanie. W celu zmini-

malizowania zniekształcenia dźwięku przy chwilowym przekroczeniu zakresu podczas

sumowania próbek, zrealizowano eksperymentalny akumulator próbek, który rozkłada w

czasie próbki o wartości wykraczającej poza zakres reprezentacji wyjściowej. Dzięki temu

sterownikowi urządzenie jest widoczne w systemie Linux jako karta dźwiękowa, która jest

w pełni zgodna ze standardem ALSA, oraz generuje dźwięk o rozdzielczości 24 bitów z

częstotliwością próbkowania 96kHz. System jest rozszerzony za pomocą przetwornika

cyfrowo-analogowego zaimplementowanego w układzie Sigma-Delta na jednym bicie

GPIO.

Słowa kluczowe: FPGA, Synteza dźwięku, SoC, DMA, SVF

4

 załącznik nr 10 do zarządzenia

nr 46 /2016 Rektora PW

 Politechnika Warszawska

 Warsaw University of Technology

 1 / 2

 ………........................
 miejscowość i data

 place and date

……………………………..
 imię i nazwisko studenta
 name and surname of the student

……………………………..
 numer albumu
 student record book number

…………………….……….
 kierunek studiów
 field of study

OŚWIADCZENIE

DECLARATION

Świadomy/-a odpowiedzialności karnej za składanie fałszywych zeznań oświadczam,

że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie, pod opieką

kierującego pracą dyplomową.
Under the penalty of perjury, I hereby certify that I wrote my diploma thesis on my own, under the

guidance of the thesis supervisor.

Jednocześnie oświadczam, że:
I also declare that:

 niniejsza praca dyplomowa nie narusza praw autorskich w rozumieniu ustawy z dnia

4 lutego 1994 roku o prawie autorskim i prawach pokrewnych (Dz.U. z 2006 r. Nr 90,

poz. 631 z późn. zm.) oraz dóbr osobistych chronionych prawem cywilnym,

 this diploma thesis does not constitute infringement of copyright following the act of 4

February 1994 on copyright and related rights (Journal of Acts of 2006 no. 90, item 631 with

further amendments) or personal rights protected under the civil law,

 niniejsza praca dyplomowa nie zawiera danych i informacji, które uzyskałem/-am

w sposób niedozwolony,

 the diploma thesis does not contain data or information acquired in an illegal way,

 niniejsza praca dyplomowa nie była wcześniej podstawą żadnej innej urzędowej

procedury związanej z nadawaniem dyplomów lub tytułów zawodowych,

 the diploma thesis has never been the basis of any other official proceedings leading to the

award of diplomas or professional degrees,

 wszystkie informacje umieszczone w niniejszej pracy, uzyskane ze źródeł pisanych

i elektronicznych, zostały udokumentowane w wykazie literatury odpowiednimi

odnośnikami,

 all information included in the diploma thesis, derived from printed and electronic sources,

has been documented with relevant references in the literature section,

 znam regulacje prawne Politechniki Warszawskiej w sprawie zarządzania prawami

autorskimi i prawami pokrewnymi, prawami własności przemysłowej oraz zasadami

komercjalizacji.

 I am aware of the regulations at Warsaw University of Technology on management of

copyright and related rights, industrial property rights and commercialisation.

5

 załącznik nr 10 do zarządzenia

Politechnika Warszawska nr /2016 Rektora PW

 Warsaw University of Technology

Oświadczam, że treść pracy dyplomowej w wersji drukowanej, treść pracy dyplomowej

zawartej na nośniku elektronicznym (płycie kompaktowej) oraz treść pracy dyplomowej

w module APD systemu USOS są identyczne.
I certify that the content of the printed version of the diploma thesis, the content of the electronic

version of the diploma thesis (on a CD) and the content of the diploma thesis in the Archive of

Diploma Theses (APD module) of the USOS system are identical.

 ...
czytelny podpis studenta

legible signature of the student

6

Contents

1. Introduction . 9

1.1. Scope of Thesis . 9

1.2. Thesis Layout . 10

1.3. Overview of existing solutions . 10

1.3.1. Synthesis techniques . 10

1.3.2. DMA techniques . 11

1.3.3. Writing ALSA driver . 11

2. Background . 12

2.1. Origins of synthesis . 12

2.2. Synthesis approaches . 14

2.2.1. Subtractive synthesis . 14

2.2.2. Additive synthesis . 15

2.2.3. Other approaches . 16

2.3. MIDI protocol . 16

3. Hardware overview and System Design . 17

3.1. Hardware overview . 17

3.2. Requirements Analysis . 19

3.3. System Design . 20

4. Hardware Design . 21

4.1. Sine wave generation . 22

4.2. Square wave generation . 24

4.3. Sawtooth wave generation . 25

4.4. Triangle wave generation . 25

4.5. State Variable Filter . 25

4.6. Sample accumulator . 26

5. Software Design . 28

5.1. Board Setup . 29

5.2. MIDI receiving application . 30

5.3. DMA - ALSA synthesizer driver . 30

5.4. Obtaining the data . 31

6. Testing . 32

6.1. Verilog Testbenches . 32

6.2. Oscilloscope testing . 33

6.3. System Testing . 36

6.3.1. Examples . 38

6.4. Debugging . 39

6.5. Timing and Delays . 39

7

6.5.1. Software delays . 39

6.5.2. Hardware delays . 39

7. Results . 41

7.1. Resource Utilization . 41

8. Conclusions . 42

8.1. Future Work . 43

8.2. Alternative solutions . 44

9. Acknowledgements . 45

References . 47

List of Symbols and Abbreviations . 49

List of Figures . 50

List of Appendices . 50

8

1. Introduction

Since the popularization of a modular one by Robert Moog in the mid-60s, synthesizers

have changed the way humans produce music tremendously. While at first analog, they

soon became digital and dominated the music industry. Nevertheless, analog ones are still

sought for their unique sound and because they can produce signals less deterministic

than digital ones.

Because a synthesizer can imitate real instruments it is often used by professional and

amateur musicians alike. Such a synthesizer often can be implemented solely in software,

but when on-stage and performing live, an artist requires it to be at least partly embedded

into the hardware. When realized in hardware, it can be composed of special Digital

Signal Processing units, which are designed especially for this. However, for amateur

realizations or scientific experiments such a solution is often too inflexible and in such

cases implementing this in Programmable Logic is more appropriate. Field Programmable

Gate Arrays are the most popular types of such devices, and they allow for very rapid

prototyping of a hardware circuit written in a Hardware Description Language such as

Verilog, SystemVerilog or VHDL.

The world of FPGA’s is constantly evolving and the available materials soon become

obsolete and the developer has to face a plethora of time-consuming challenges. Apart

from them, they have to possess knowledge ranging from electronic circuit design, through

digital and analog filtering knowledge, to Linux Device Drivers and Linux internals under-

standing. For this project especially, understanding signal processing was crucial because

it utilizes a Numerically Controlled Oscillator for the waveform generation. Moreover,

some degree of proficiency with high-speed digital circuits was required to implement PL

pipelining.

1.1. Scope of Thesis

This project is meant to utilize System on a Chip that comprises FPGA to generate

signals corresponding to a MIDI note read from the user, and process them in Hardware,

before passing them to Software running a Linux Operating System. The combination of

HPS and FPGA is desired because it allows for utilizing best of both worlds, parrallelism of

the FPGA paired with the potential of the Linux on top of the HPS. Minimal requirement

is a polyphonic sine wave oscillator capable of generating all MIDI notes. While various

steps of the sound synthesis and processing may be offloaded to the FPGA to utilize its

inherent parallelism, at least a minimal synthesizer should be implemented entirely in PL

and then feed that sound to the Linux System via Direct Memory Access. After successful

implementation of a sine wave synthesizer different waveforms can be added to even

further push the boundaries of this SoC and provide more control to the user.

All the basic processing tasks needed to generate a sound successfully should be

9

1. Introduction

offloaded to the FPGA, while still allowing for the reception of the sound on the Software

side and further processing of received signal samples. Hence, generation, filtering and all

of the other calculations which can be parallelized should be implemented in the PL while

allowing the user to provide their DSP subsystems on the Linux side via the JACK audio

system. The data received by the Linux side can be processed in real time or saved to a file.

Saving to a file should be without any glitches or unwanted audible effects.

1.2. Thesis Layout

The next chapters of this thesis focus on first introducing concepts and history of

sound synthesis, then briefly presenting the MIDI protocol. Next, overall system design is

discussed, hardware choice and capabilities are explained, then the functional require-

ments of the system are stated. Last but not least, both the hardware and the software part

are discussed in detail. Communication, synthesis, and effects generation is explained;

some details and encountered problems are examined. Finally, testing and results are

presented along with an overview of things that were enhanced after thorough testing of

the system. The thesis is surmounted with a conclusion and acknowledgments.

1.3. Overview of existing solutions

The topic of creating a synthesizer using Programmable Logic is not one of much

widespread eminence. Although various amateur projects are focusing on creating a

working synthesizer, almost none of them try to make use of both the hardware and

software parts to generate and process the sound. Three main components are usually

discussed in scientific papers: synthesis techniques using the FPGA, DMA techniques, and

writing an ALSA driver. On the day of writing this thesis, several projects are focusing on

utilizing FPGA’s for accelerating sound processing. However, none of them implements a

working live stand-alone synthesizer which can be further enhanced on the software side.

At the time of writing this article, there seems to be just one work resembling mine.

Two students of Worcester Polytechnic implemented synthesizer which utilized FPGA as

the main synthesis and effects generator unit while offering Python GUI to the user.[1]

The FPGA used there is much more powerful than the one I used in my project, however,

was not pushed to the limit. The FPGA used in the cited project was also realized in a SoC

system but utilizing the system just for reading the MIDI commands from the external

keyboard. It is worth mentioning the extent to which their work implemented various

musical effects, most of which are too expensive in terms of resources utilized for my

choice of hardware.

1.3.1. Synthesis techniques

This topic is by far the most explored, as it is quite mature and the demand for efficient

synthesis techniques is ever-growing. Numerous works focus solely on the ways the

10

1. Introduction

FPGA may be used to accelerate the synthesis process, or where it is used as a standalone

synthesizer from the bottom-up. A work by Jacek Borko et al.[2] focuses on the parametric

additive synthesis of audio signals while maintaining a low power consumption. Other

works solely utilize the FPGA for generating audio effects[3] or make use of the parallelism

of the FPGA for converting mono sound on the input to a stereo on output.[4] There are

also some course works focusing on teaching some aspects of the FPGA utilization and

programming which present interesting approaches to the synthesis. One of such works is

a project specification for a project at University of California at Berkeley, where wavetables

with precalculated waveforms are sampled using the FPGA to generate sound.[5]

1.3.2. DMA techniques

Utilizing Direct Memory Access is ubiquitous is every high-speed data acquisition

or processing system. Because of that numerous works are written on this topic, and it

is incessantly developed. One such work presents several distinct techniques for such

communication, among which one utilizes DDR as temporary buffers.[6] Because cur-

rently, effective utilization of Graphics Processing Units is a popular topic, many works are

written regarding FPGA-GPU communication. Thankfully, many complex IP cores have

been already written and tested, in turn allowing for robust and quick development of

such a solution on the FPGA. One example of such IP core is the Altera mSGDMA IP Core

which is documented in the manual[7] and additionally in a guide written by one of the

users.[8]

1.3.3. Writing ALSA driver

This last subject is most poorly documented, offering outdated technical guides and al-

most no scientific work regarding it. Usually, ALSA device drivers are written by specialists,

and judging by the scarce amount of such drivers in the Linux kernel git repository, virtually

nobody needs to share this knowledge as every device has its specification. Nevertheless,

there were some approaches for making it accessible[9], and detailed as this article is, it

still leaves out a lot of crucial information. Some of it is complemented with the pages

from the ALSA-project wiki page[10] and some of it has to be garnered by trial and error,

or reading ALSA source code. Fortunately, there is a project which tried to even further

formalize the steps required for writing a successful ALSA driver, but it again failed to

convey the most crucial step - data transfer constraints when communicating with real

devices.[11][12] Still, it remains the most up-to-date and relevant document regarding

ALSA driver implementation and deserves more praise.

11

2. Background

Since the dawning of the human race, music was an indispensable part of our lives.

Much can be said about the effects it has on human beings, ranging from motivating

and energizing to relaxing and unwinding. The virtue of synthesizers is that they allow

generating almost every conceivable sound a human being is capable of hearing, or even

beyond that. Because of that, they are nowadays ubiquitous, being embedded in our

mobile phones or even in smartwatches. Nevertheless, industry-grade synthesizers are

still expensive enough to discourage their compulsive purchase and are a mix of both

analog and digital domains.

Because their usage often does not require much specialized domain knowledge

beyond some prior musical education, they found their way to almost every household

in the form of a musical keyboard. Probably most of the young people were in touch

with them at some point in their lives, and some of them use it daily. Synthesizers are

an indispensable tool for amateur musicians and music producers because they allow

for a broad range of instruments and effects for a low cost. Pairing them with a Digital

Audio Workstation permits for enhancing their capabilities and even altering their primary

functionality by reprogramming them. Such options are enabled in this project’s Novation

LaunchKey MINI, where every knob and touchpad can be reprogrammed on a whim of

the potential user. Often buying a synthesizer is a much better choice for an amateur

musician or a band than buying a specific physical instrument, especially when their

theme music is related to electronic or techno. Their current fidelity is such high that

sometimes one cannot tell the difference whether the instrument currently being played

is generated by means of a synthesizer or a true musical instrument. Nowadays, there is a

trend for returning to the origins of synthesis and the craftsmanship of analog synthesizers

is abound. This project is somewhat a movement in this direction since it aims to show

that sound synthesis is possible in yet another way on yet another hardware and software.

It leaves no doubt that synthesizers changed and improved the ways people create

music, facilitating this process as a whole and most importantly allowing for very quick

iterations resembling prototyping. Having an abundance of effects and sound banks, one

can quickly find a sound that suits them without the need for re-tuning the instrument or

even worse ordering a new one to be crafted by a specialist maker. With synthesizers, it

takes just one knob turn or one keypress to change the whole sound domain in which the

musician currently operates, which makes them much sought after item.

2.1. Origins of synthesis

It is transparent that with the passage of time people would become gradually inter-

ested in making the process of sound creation easier and more accessible in both financial

terms and certain required skills. The popularization of electricity even further influenced

12

2. Background

their rapid development. First in form of Theremin[13], Mellotron[14], and then Ham-

mond’s Organ[15], synthesizers soon became very popular throughout avant-garde music

communities. The de-facto first synthesizer was conceived by Harry Olson and Herber

Belar at the RCA laboratories in Princeton in 1957 - RCA Mark II. Because transistors were

just being started to be mass-produced, it utilized 750 vacuum tubes instead of them. The

next milestone in their development was the creation of a modular synthesizer by Robert

Moog, who was an engineer and a physicist. It is worth noting that these synthesizers were

all monophonic, and even though they offered various effects to the user, they could be

just applied to the single sound being played. Only in 1978, with the release of Prophet-5

from Sequential Circuits, polyphony found its way to the synthesizer world. Moreover, it

allowed for storing the sound for future replay, instead of tediously recreating it each time

it was desired. Miniaturization of synthesizers was also a popular topic during these times

Figure 2.1. A Minimoog analog synthesizer.

- Minimoog was one of such creations and it is visible in figure 2.1.

By the 1980s, with the rise of MIDI and the conception of first digital synthesizers, they

conquered the music market. Pop artists started using them for their performances which

greatly influenced their reach. The most popular synthesizer models, being sold even

today were developed during this time. Such creations as Yamaha DX7, Roland D-50, or

the famous Korg M1 remain prominent examples of precursor digital synthesizers. In the

subsequent years, synthesizers became miniaturized and even embedded in special DSP

chips that we can find in almost every electronic device. With the passage of time, analog

synthesizers became again sought after due to their vintage sound and feel, and probably

in search of sounds different from these popular nowadays.

13

2. Background

It cannot be settled whether it was the synthesizer that made bands like Pink Floyd or

musicians such as David Bowie or Jean Michel Jarre popular, or it was the other way round.

Nevertheless, they soon became indispensable mediums for progressive rock bands and

after a few decades, the groundwork for electronic and techno music. Ranging from

classical music, through pop and rock music, to electronic and hard techno, synthesizers

have found their way to the contemporary musician and are now an indispensable tool of

the trade. If not for them, some greatest musical pieces would not have been composed

due to not having such types of sounds to choose from.

2.2. Synthesis approaches

While there are multiple ways to manage sound synthesis, the most prominent of them

are a subtractive and additive synthesis. These two are historically the most important

ways of achieving the goal of synthesis - generating an audible effect. Some other types

include Frequency Modulation synthesis, Sample-Based synthesis, and Granular Synthesis.

All of these do not stem from the idea of harmonics and periodicity, but instead, employ

different techniques to achieve the same result.

When implementing signal synthesis in the digital domain, one has to take into account

that the digital representation is inherently finite when compared to its analog form.

Because of that, some special techniques have to be undertaken in order to preserve the

highest accuracy and quality of the output signal. The most prominent of which is the

concept of Direct Digital Synthesis, which is used in this project extensively.[16]

2.2.1. Subtractive synthesis

This is the type of synthesis that was most popular in analog synthesizers because it

relies on just two components - harmonic-rich wave generator and a voltage-controlled

LPF, the result of these can be then amplified and put through a mixer to achieve polyphony.

The most popular wave shapes that are utilized in such synthesize are square, sawtooth,

or triangle wave. These of course can be mixed to create even more unique and peculiar

results at the final stage of synthesis. The lowpass filter may be a regular one or equipped

with a resonance near the cutoff frequency to enhance the resultant sound. Of course,

different types of filters may be also applied to filter out for example some special bands or

notches in the spectrum. Filters used are usually 2-pole or 4-pole, meaning they have an

attenuation of respectively 12 dB or 24 dB per octave. The signal leaving the filter can now

be shaped using a special envelope or a simple amplifier. The most popular technique of

shaping the envelope is called ADSR which stands for Attack Decay Sustain Release. With

these parameters, one can control how long the sound rises, falls, is stable, and finally how

long it takes until it disappears after the note is released. Finally, if one desires so they

may add a Low Frequency Oscillator to create a vibrato or a sweep effect at the output

of the synthesizer. In the end, the signal may be mixed with other signals for polyphonic

14

2. Background

output. Wielding all these components, the synthesizer is powerful enough to meet the

requirements of even the most demanding musicians.

2.2.2. Additive synthesis

Additive synthesis techniques can be traced back as far as the conception of harmonic

wave analysis by Joseph Fourier in 1822. It states that every waveform can be composed of

simple harmonic waveforms of different frequencies and is the groundwork behind some

of today’s most prominent technological advancements such as MRI or space exploration.

It can be seen in the figure 2.2. The earliest synthesizers relied on this technique to gener-

Figure 2.2. The difference between subtractive and additive synthesis techniques.

ate their unique sounds, such as the Hammond’s Organ. In principle, the sinewaves of

differing frequencies are mixed to achieve a waveform of much different timbre and shape.

Such waveforms as square, triangle, or sawtooth are composed of multiple harmonics of a

sinewave, hence they themselves are already results of additive synthesis. Similarly to the

subtractive synthesizer, this one also makes use of contour generators and amplifiers to

create its myriad sounds. A mixer is used here for every single monophonic sound in order

to stack the harmonic waveforms on top of each other. One crucial component of the ad-

ditive synthesizer is the noise generator, which makes some sounds (especially orchestral

ones) sound more real. It is also a building block for a technique called resynthesis, which

takes an input sound and tries to recreate the harmonic structure of it.

15

2.2.3. Other approaches

Apart from the two most popular types of synthesis, some additional are quite popular

in the music industry. Frequency Modulation synthesis is one such technique, where

via the usage of a modulator oscillator, the frequency of the original wave is changed to

produce yet another one. The most prominent example of a synthesizer employing it

was Yamaha DX7, which shaped the sound of the 1980s. This concept is fairly similar to

the ordinary Frequency Modulation known from radio communication, except here the

carrier modulation is in the audible range and allows for interesting results.

On the other hand, sample-based synthesis or wavetable synthesis is based on storing

short parts of a periodic signal and running through them with either a slower or a faster

pace to generate sounds of differing frequencies. They can be overlapped and combined

in any desired way to create novel sound forms. This project utilizes a similar approach to

generate the sound, with a quarter-sine wavetable and different tuning words that regulate

the output sound frequency.

Granular synthesizers are an upgraded version of the sample-based ones. Their sam-

ples are even shorter, around 10-50ms of duration and they are incessantly combined

in order to create a fine-grained waveform. They require quite a lot of processing power

because of this and with the development of more advanced software, they were adapted

in form of programming languages. Starting from mostly console-style ones like CSound,

Chuck or Faust through more interactive sorts of Pure Data or SuperCollider, numerous lan-

guages have off-sprung from that synthesis technique. Most of them do not require much

programming knowledge, and allow for achieving quick effects without real synthesizer

hardware. Instead they utilize mostly the software resources of one’s PC in conjunction

with their soundcard.

2.3. MIDI protocol

Musical Instrument Digital Interface is a protocol used by all modern digital music

devices, Digital Audio Workstations, and regular computers. It is important to under-

stand that MIDI is not a musical file format, it is just a sequence of commands that

MIDI-compliant devices can interpret and react to. Since 1983 it is an industry-standard

protocol for all Musical devices. In 2020 MIDI 2.0 was introduced and brought some

new capabilities like profile configuration, property exchange, and protocol negotiation.

Because this protocol is still in its infancy, this project utilizes the older version of the

protocol. There is also an alternative protocol called Open Sound Control, which is similar

to MIDI but allegedly allows for more data types and utilizing symbolic paths instead of

numerical addresses of the devices.

MIDI, as a set of commands sent from the generating device to the MIDI-compliant

playback device, is utilizing commands encoded in a binary format. Each command is

composed of three bytes, the first one being the control byte and the remaining two being

16

3. Hardware overview and System Design

the parameter bytes. All bytes except the first one have 0 as MSB, effectively allowing up to

128 values to be set. The first byte informs the receiver what type of message is being sent

and to which channel. It is worth noting that MIDI allows up to 16 channels - simultaneous

instrument tracks. The two following bytes have a different meaning depending on the

context in which they are sent. For note messages, they are consequently: the MIDI

value of the note being turned on or off, and the velocity with which it should be played

- loudness. For control messages: the controller number and the value assigned to the

controller. There is also a pitch/bend sequence of bytes which is used for varying the pitch

of currently pressed (or echoing) sound.[17]

3. Hardware overview and System Design

Choosing hardware and planning the overall system design is often a demanding

task, especially for a project rooted in several distinct fields of study as this. One cannot

underline the importance of proper platform choice which often heavily influences the

pace at which the project progresses.

3.1. Hardware overview

For the project discussed, I needed a device that would offer both an FPGA and an

embedded Linux system with preferably shared memory to make DMA transfers easier.

Although there are various devices that offer both FPGA and a HPS capable of running

Linux, I was constrained by budget and did not want to spend too much on a board

which I would use just once if it turned out not suiting my liking. The obvious choice of

the manufacturer arose: Xilinx or Intel. Both offered similar devices at a similar price:

De0-Nano-SoC from Intel and slightly more expensive PYNQ-Z2 from Xilinx. The choice

was not straightforward, as from a perspective PYNQ offered much more DSP slices which

are crucial for my application and the Vivado suite is much better documented than

Quartus II. Though the opinions vary, the Quartus suite is mostly error-free and allows for

the rapid development of prototypes thanks to the broad library of University Programme

IP Cores. The lack of rapid-recompile option in the free version of the program is most

vexing because in this project compilation times took about 15 minutes, which when

debugging a minor issue occurring only on hardware is quite much.

However, after reading numerous reviews and browsing through projects utilizing both

of these boards I decided to opt for De0-Nano-SoC. Despite multiple issues with setting

up the Quartus IDE, and missing or outdated quickstart’s for SoC applications, I was able

to quite quickly complete a mock project and blink a LED on it. The board chosen for this

project is visible in figure 3.1.

The board features an Altera Cyclone V FPGA with over 20 000 logic elements, 4 Phase

Locked Loops and 3 clocks. Moreover it provides the user with a HPS based on ARM

17

3. Hardware overview and System Design

Figure 3.1. De0-Nano-SoC development board

Figure 3.2. Schematic of the De0-Nano-SoC development board

Cortex-A9 Dual-Core processor working at 925MHz and 1GB DDR3 SDRAM which can

be shared with the FPGA. It also provides some basic connections: GPIO’s, Ethernet, USB

connections and push-buttons. It can be visible in figure 3.2.

De0-Nano-SoC can be reconfigured by special settings of MSEL pins to utilize only

FPGA, HPS, or both of them simultaneously. The on-board processor is capable of running

any embedded Linux distribution, be it Yocto or custom Buildroot setup. It can also

18

3. Hardware overview and System Design

support other operating systems, such as FreeRTOS. Overall, the board faced the challenge

intrepidly and with some struggling all necessary components could fit into the restricted

LE pool, which was much smaller than one in similar projects.

Figure 3.3. Novation Launchkey MINI keyboard

Moreover, for the MIDI compliant device, I have chosen the Launchkey MINI from

Novation. It features 25-keys and allows tuning a few octaves up and down, effectively

covering the whole MIDI range. It also supports note velocity detection allowing for

taking this into account when synthesizing the requested sound. Moreover, it features

up to 16 MIDI channels, hence it can act as multiple MIDI instruments at once. Several

programmable knobs are also available, for example for pitch-bend control. It can be seen

in Figure 3.3

3.2. Requirements Analysis

The system was designed in a particular task in mind: synthesizing a musical signal

with the help of the FPGA and outputting the result to the Linux system running on the

target. The user is presumably a musician or a hobbyist who would like to have a handy

basic synthesizer capable of generating a requested musical note. Once the system is

designed and flashed it would require minimal (if any) interaction from the layman user.

The system can be extended with additional effects the user would like to implement

themselves both in hardware and in software.

Apart from being simply generated, the signal has to be properly filtered by the use of

a Low-Pass Filter. The device should allow for a polyphonic playback of requested notes,

up to 10 simultaneously. Key presses and releases should be registered without any delay.

The resulting sound can be recorded or routed to other applications on the user side in the

Linux operating system. Additionally switching between different waveforms should be

19

3. Hardware overview and System Design

possible and accessible for the user - preferably in a form of keyboard control push-button

or knob.

There should be no audible delays between the keypress and its reception by the

human ear. The system should strive for an as pure signal as possible, taking into account

distortions incurred by imperfect passive components of the RC circuit.

3.3. System Design

From an overview, the system is composed of just a single board that comprises various

distinct components. One such component is the FPGA which is responsible for signal

generation, filtering, accumulating polyphonic samples, and passing them via DMA to

the Linux OS. Because one of the project requirements is to allow for polyphonic sound

generation, an important design decision had to be undertaken - how to generate multiple

samples simultaneously. Obviously generating a separate synthesis lane for each of the

10 samples would be too costly, therefore a pipelined approach was conceived. Thus,

a multi-cycle penalty is incurred, but since the sampling speed is much lower than the

generating speed it is not a problem at all. The hardware side generates and stores the

samples for the DMA transfers to the device driver implemented in software and at the

same time outputs this generated sound to the delta-sigma DAC [18]. Generated Pulse

Width Modulated signal leaves the board via 1 GPIO pin to a second order RC circuit. This

allows us to immediately test the signal and observe any issues on an oscilloscope.

On the other hand, the Software part is tasked with reading the MIDI command from

the user keyboard device, decoding it and sending an appropriate instruction to the

FPGA. Moreover, the software part is responsible for communicating with the mSGDMA

device implemented in the FPGA and receiving the buffers. A special ALSA sound-card is

emulated by a device driver that receives the buffers via the DMA and feeds them to the

ALSA system at appropriate intervals. This device can be used by, for instance, the JACK

audio system[19] to even further extend the sound generation and processing pipeline.

A high-level overview of the system is visible in the figure 3.4.

20

Figure 3.4. High-level overview of the system.

4. Hardware Design

The crucial part of the system - the signal generator is implemented in PL on the

FPGA. Since DDS requires LUTs, FPGA was an ideal choice of architecture for this project.

Moreover, because all DSP blocks usually run in a pipelined fashion, they share resources

that otherwise would have to be copied for every additional DDS lane. This project allows

for parallel processing of 10 sounds, but this requirement is purely based on the fact

that humans usually do not play more than this number of notes simultaneously. The

hardware clock runs at 100MHz, while the outputting sampling speed is only 96kHz,

and usually no greater is needed for even high-quality sound processing. This allows

for many-cycle delays between the sound is generated and actually played back. It is a

convenience that is often utilized in projects such as this. Where the clock domains need

to be crossed, a double-clocked FIFO IP core block is used, thus eliminating any glitches

due to metastability issues. Unfortunately, the slow clock could not be generated using a

DLL because there are not enough resources left to do so - its frequency is 96 kHz which

would require fractional pipelined DLL’s, and these are costly. Hence, the slow clock was

implemented using a regular counter and a clock-enable signal which lasts just for a cycle

of the fast clock. Because of this approach, Clock Domain Crossing was avoided, which is a

common malady when designing logic systems and requires for example double latching

and other synchronization mechanisms which deal with Metastability.

From a high-level overview, the system is an NCO with a preprocessing step, an IIR

filter, an accumulator, and a sampling module. When the control is issued by the Linux

kernel module, which inputs a control message to either play or stop a given note with

a velocity corresponding to the force with which it was stricken, the ‘synthesizer_top‘

module receives it via the Avalon-MM interface and signals the ‘bank_manager‘ module

which then handles its contents. The Bank Manager is tasked with marking which modules

21

4. Hardware Design

are currently in use and which are free, additionally, it passes all intermediate results along

the synthesis chain, such as sine LUT output to the IIR filter. When the signal is finally

generated and filtered, it is the Bank Manager, that outputs this result. Handling this data

by the Avalon-ST source is done in the top module of the Synthesizer IP Core, which in

turn can be either output to a delta-sigma DAC or to the Linux OS running on the target.

For outputting the signal to the OS, an mSGDMA IP core is used, which is then controlled

on the software side by a Linux Device Driver.

The wave-changing logic is also implemented in the ‘bank_manager‘ module, where it

changes the currently output waveform instantly. There may be a few cycle residue in the

SVF because of that but it is unnoticeable by the human ear.

Figure 4.1. A view of pipelining.

The pipelining approach can be seen in the figure 4.1, T is the current sample, T-1 and

T+1 are previous and next samples respectively. It can be observed that every pipeline

element is constantly working even if the data is not valid in order to maintain pipelining

efficiency.

4.1. Sine wave generation

The core of every synthesis - generator is implemented in a way facilitating both

resource usage and ease of modification. This generation scheme is visible in 4.2. The

Figure 4.2. Sine generation overview.

groundwork behind such a solution is a phase accumulator and a phase step - the Tuning

Word. This tuning word is also obtained from a LUT covering phase increments corre-

22

4. Hardware Design

sponding to the desired MIDI note. The equation describing the mapping of MIDI note to

the frequency is [20]

fnote = 2
(m−69)

12 440 (1)

. These Tuning Words are pregenerated with a python script which takes into account

the necessary output width, the sampling speed, and the desired frequency of the output

signal. Again, the relation adheres to a certain mathematical relation

t w = fmi di ∗2t wbi t s

fs
(2)

. This allows for a flexible stepping through the sine wave LUT for each of the MIDI notes

at a low memory cost of just 128 - 24-bit values in case of my solution. Since there are ten

phase banks that are stepped through 1-by-1, the effective generator frequency for each

of them is 10MHz instead of 100MHz, i.e. they are incremented one in ten cycles of the

fast clock. It is important to note that the note sampling frequency has to be specified

in the tuning word calculation - 96kHz in this case. The phase counter is an unsigned

register of 24-bits of width, therefore it naturally overflows which is the desired effect

when implementing a DDS system. The resulting phase is then passed to the sine module,

which does the rest of the generation utilizing a sine LUT. It is of course possible to have

much greater precision of Tuning Words but this requires a bigger phase register and some

changes in the sine generation module, therefore it was unfeasible to further increase its

size once 24-bits proved to be enough.

The sine LUTs are of the size of the first quarter of a full sine period because it is a

twofold symmetric function and can be easily generated with just a quarter of a period

of values at hand. This does not mean such a trade-off is without its consequences -

the whole system is delayed by three cycles only due to the sine wave generation and

interpretation of the input phase. The diagram explaining the above symmetry is visible in

Figure 4.3. Sine wave symmetry.

4.3. The first symmetry can be observed along with the MSB - the negative symmetry. The

second one is the 2nd MSB, which is the rise-fall symmetry, which even further reduces

the size of the required LUT. [21] In order to prevent minor glitches in the sine wave size, it

is shifted left by 1 sample. In effect, two bits of the incoming phase are utilized just for the

symmetry resolution which allows for the generation of a smaller LUT by an order of 4.

23

4. Hardware Design

Such a solution is quite common in both simple and advanced synthesis systems, because

utilizing floating point mathematical functions is often quite costly and in some cases

impossible to implement on hardware. If one wished for even greater performance, they

could use CORDIC [22], which even further reduces resource utilization on a system like

the FPGA.

Initially, such a solution was enough to generate a high-quality, smooth sine wave

on output. However, the resource requirement for a high-quality audio wave is huge,

assuming just the 16 bits of phase input to this LUT. Obviously, storing a LUT of the size

of 224 is unfeasible, as it would occupy much precious LE’s which can be used for much

more robust tasks. Because of that, a less resource-heavy way of generating sine wave

samples was sought and implemented - linear interpolation of the accumulated phase

between two adjacent sine wave LUT entries. It comprises two sine LUTs which are then

interpolated at a step of 8192 units to attain the 24-bit precision of the whole system. The

interpolation is linear, hence previous and next samples are multiplied by the distances

from the current phase value. The results of this multiplication are added and they are the

resultant sine value. Though this step requires an additional block of multipliers and a

cycle is lost to compute the result, it is much more resource-efficient than the approach

without interpolation.

Measuring these two distinct generation ways yielded different Signal to Noise Ratios,

hinting at the interpolation’s superiority. Because the digital quality of the generated

sound is more important than the analog one, moreover the analog DAC is not meant to

produce the highest possible quality, the SNR is defined for the digital fixed-point integers

as follows

SN RdB = 20∗ log10
si g nall vl

noi sel vl
(3)

The non-interpolated signal achieved the SNR of slightly less than 60dB and the inter-

polated over 75dB which is a not bad result for taking into account the non-ideality of

the interpolation technique. Hence, the interpolation technique in this case proved to be

superior to the other in terms of both resultant signal and resource utilization.

4.2. Square wave generation

The square wave is generated without the help of any LUT as it would be non-efficient

in terms of resource utilization. Instead, it compares the input phase against a constant

representing half of the phase and outputs either a logical -1 or 1 represented by the 2’s

complement 24-bit value of the corresponding magnitude. Because it is a square-wave and

is composed of many periodic signals, the SVF exploited some unexpected behavior with

overflows and this signal bypasses the filtering stage. The output signal is arithmetically

shifted right by one to equal its magnitude to other signals, like sine or sawtooth.

24

4. Hardware Design

4.3. Sawtooth wave generation

Similarly to the sine and triangle waves, this waveform uses a LUT for its sample

generation. Instead of a quarter-wave, it utilizes a half period LUT which is shifted up for

the second part of its period. Instead of 512 LUT entries, twice as that is used to obtain the

exact same precision as for other waveforms. The usual 4-cycle latency is also maintained

here.

4.4. Triangle wave generation

This waveform is implemented in exactly the same way as the sine wave, except for

the LUT which is a rising slope. Again it is only a quarter of wave which is then used twice

for interpolation and is outputted after 4 cycles.

4.5. State Variable Filter

As much as important as the generator, this module is especially vital in an audio signal

generation because of high sampling speed and quite low frequencies of the generated

signal. The LPF prevents aliasing and harmonic occurrences of the generated signal, there-

fore making it an ideal candidate for this type of solution. Moreover, this particular type

of filter boasts its variable cutoff frequency, which makes it an even better candidate for

filtering out all unwanted frequency components depending on the MIDI note stricken. If

this was an analog synthesizer, such filters as an ordinary transistor-ladder in a Moog style

or a Sallen-Key filter would be a perfect choice. But since this is a digital synthesis project,

a different solution is necessary, and thankfully DSP and Audio companies incessantly

develop new types and variations of digital filters. What is more, since such filters usually

are used in embedded solutions and special DSP processors, they are highly optimized

and come in many types.

Initially, such a filter was conceived by Hal Chamberlin and was named a state-variable

filter [23], and even though it was an excellent filter implementation back then, it had one

galling trait - limited frequency control range. Hopefully, recently Andrew Simper from

Cytomic developed a filter based on it which used trapezoidal integration to overcome the

aforementioned issue [24]. Implementing this filter in Verilog proved to be challenging for

me, as this was the first time I developed a digital filter in this language and for an FPGA.

The filter coefficients were precalculated with a python script as usual and placed in a

LUT in a Q2.37 notation because of high precision requirements. This extended precision

is maintained throughout whole filter calculations and is truncated only for filter output

in order to maintain as much stability and accuracy as possible. This LUT is also not

very large in size, and although it could be replaced with an in-system multiplication and

division, it would incur unwanted delays and probably a precision loss. For this module,

four multipliers are needed to be synthesized and they run in a pipelined fashion like

the rest of this project. In just three cycles, the input signal is filtered and is available for

25

4. Hardware Design

output, which is much faster than it would be possible with the fastest FIR filter. In my

implementation, I used the abbreviations in step with these of Andrew’s to make it more

accessible to a potential reader or implementer.

It is important to note that when numbers are expressed in the Q format, they require

special scaling for bringing them back to the ordinary binary notation. For the multiplica-

tion result, this scaling has to be performed twice - once for each multiplicand. Forgetting

to do so will result in a totally jumbled output signal and a faulty filter. When truncating

the output signal, special care needs to be taken in maintaining the sign of this result.

Therefore, the MSB and bits from 36 to 14 inclusive are taken as the output signal. This

way two bits which are necessary for a precise calculation of fixed-point numbers are

skipped and the result is correct.

Figure 4.4. A Lowpass State Variable Filter block diagram.

A diagram showing this particular SVF operation is visible in figure 4.4.

4.6. Sample accumulator

When the sample is finally generated and filtered, it is sent to the sample accumulator

which is tasked with mixing the incoming samples from up to 10 synthesis lanes and

outputting the result to the FIFO. In order to prevent overflowing of the value, several

measures are undertaken and implemented. First of all, the incoming value is scaled

down by half by a single arithmetic shift right. Next, when the incoming values are added

together, they are compared against MIN and MAX value possible to achieve with signed

24 bits signals, and if after summing they are greater, the overflow buffer is filled with the

overflowed amount. The overflow buffer is appropriately sized, to prevent even further

overflows and it is unloaded whenever possible. If in one cycle the value starts to overflow

and in the next, it is decreasing, the overflow buffer is gradually discharged, until it is

empty and the output value is again equal to the actual sum of the inputs. This solution

incurs a slight phase delay but prevents loss of precision which is crucial in high-resolution

systems like this.

26

4. Hardware Design

Because it works on a 10-cycle basis, the last cycle has to be treated slightly differently

and the code for this is therefore lengthy. To achieve slightly less precision with a simpler

implementation, one could ignore more than one cycle of phase delay and just output as

much of the overflow buffer in the sample succeeding the overflowed one, ignoring the

rest and clearing the overflow register immediately.

27

5. Software Design

The software part of the project comprises most importantly the Linux OS which

was configured to support MIDI, ALSA, and JACK. Additionally, two main parts can be

distinguished: MIDI decoder userspace application and a special Linux kernel driver

to support receiving DMA buffers and feeding them to the ALSA system. Configuration

of the system plays a major role in making this possible and is also described in much

detail. Since the FPGA is a real device, it has to be recognized by the operating system

and registered with the Linux platform system by a special driver. Even though there is

much common knowledge regarding writing such a driver, fine-tuning communication

parameters, and designing an efficient communication scheme proved to be demanding.

Figure 5.1. A software operation flowchart.

The logic flow of the software is visible in figure 5.1. Three major operating events

28

5. Software Design

are visible: striking a MIDI note, commencing recording, and the high-resolution timer

routine. It is worth mentioning that the recording logic flow is commenced by the arecord

process and is regulated by ALSA, hence some function calls are subject to race conditions

and in such places, a mutex is used to synchronize the concurrent access.

5.1. Board Setup

First and foremost, since a special hardware device was created and had to be visible in

the operating system, a new entry in the Device Tree Structure had to be populated. When

the hardware design is completed, Quartus scripts can be utilized to generate the new

DTS, which can be then provided to the bootloader and kernel. Next, the uBoot bootloader

utilizes this DTS for itself and SPL generation so that proper hardware components are

initialized at boot-time before Linux is loaded. Because some desired parameters and DTS

entries are not properly exported by Quartus, they have to be moved manually - this is

particularly relevant to custom clocks synthesized with the use of PLL’s. Moreover, when

designing custom IP cores, one has to export several parameters manually to a _hw.tcl file,

in order to add them to the generated DTS. Most of the commands and descriptions of

this process in more detail can be found at dedicated wiki page[25] and thanks to quite

dated but still valuable guide[26]. During the process of finding the proper and up-to-date

way of setting up the board, I created a document summing up all these steps.[27]

Intel provides their own fork of Linux kernel - linux-socfpga[28], which is slightly

modified to accommodate for some of their architectural differences and is lagging behind

the development of the primary repository. Linux kernel version 4.14-130ltsi was used for

this project as it was the latest version marked as long-term supported at the conception of

this project. Apart from enabling ALSA support, ext4 filesystem, Loadable Kernel Modules,

enabling FPGA Bridge and Manager, and setting the system type to Altera SOCFPGA

Family no other changes are necessary in order to have kernel capable of working with

this project.

The root filesystem used for this project was build using the Buildroot build system

and needed only installing desired ALSA-lib applications such as aseqdump or arecord. In

order to have a smooth project flow, I set up the Ethernet connection and transferred all

necessary data via scp. There are few additional steps required for setting it up successfully,

such as setting up sshd and generating enough entropy (which is scarce on embedded sys-

tems) with haveged. The scripts which perform these steps are available in the Appendices

section with all other scripts.

When any Loadable Kernel Modules are built, they have to be installed to the target

kernel manually by specifying it in the make command. Moreover, LKM have to be enabled

in the target kernel in order to support them. With these steps completed, the initial SD

card with the system image has to be flashed via a special utility script designed by Intel

29

5. Software Design

and available for download. The card has to be only reflashed when a change to the kernel

or bootloader is required, any other change made to the rootfs can be made via Ethernet.

5.2. MIDI receiving application

This is the first component that starts the processing chain, here the MIDI command is

read from the ALSA system where it is provided by built-in ALSA kernel MIDI driver which

supports the Launchpad keyboard. The command is decoded and reformatted to suit the

internal format of messages for the FPGA synthesizer. Once formatted, it is written to the

character device file of the memory-mapped Avalon Slave and received on the Hardware

side. It supports the following events: NOTE_ON, NOTE_OFF, WAVE_CHANGE, and a

special command for turning off all the notes at once. The application supports reading

on different MIDI ports, thus can be easily extended to support additional devices if the

hardware allows for more USB connections or virtual MIDI generators.

The feeder application is paired with a kernel module whose only responsibility is the

registration of the device file in sysfs and allowing writing into it, in turn transmitting the

command to the FPGA. It writes on a word basis every time the userspace requests a write

and the device is successfully registered.

Table 5.1. MIDI userspace command

Bits 32 - 16 15 14-8 7-0

Function Unused ON/OFF MIDI note velocity

The API used in this case is a simple write syscall which writes a single 32-bit word

with a command composed of a truncated MIDI command visible in the table 5.1.

5.3. DMA - ALSA synthesizer driver

Once the data is synthesized at the FPGA side, it is then sampled with a clock running

at 96 kHz and submitted to the mSGDMA for transfer to the Linux driver. It is responsible

for registering a soundcard within the ALSA system and performing DMA transactions for

the data from the FPGA. When the application uses ALSA API for recording this data it uses

a ring buffer, hence the driver has to follow the same fashion and allow for enough buffers

so that buffer overruns do not occur. Each time a transaction is completed, an interrupt is

fired from the DMA controller and the driver responds by informing ALSA that a recording

period has elapsed. Because ALSA mostly uses a ‘frame‘ terminology, which stands for one

sample size taking into account the number of channels and data width, conversions from

bytes are required. The format used is S32_LE which is a 32-bit value, as the recorded file

memory sizes are not of much relevance and this way the communication is faster. Even

though the signal is 24-bit Little Endian it is stored as a 32-bit value, because of that, it can

be played by most of the common audio players like VLC or Audacity.

30

5. Software Design

At the time of writing this paper, the driver performs interrupts every 10ms thus requir-

ing a high-resolution Linux clock, otherwise, jitter and stalling occur heavily disturbing

the driver output. The device is controlled with special registers that are memory-mapped

and controlled with control words.

5.4. Obtaining the data

The userspace can make use of the data that the soundcard receives and for example

use a program like arecord or audacity to capture its output. Currently, just a single format

and sampling frequency is supported, which is caused by these parameters being fixed at

the Hardware side. The data is also monophonic but multiple channels can be added as

an extension, this would require support from the hardware side to either output the data

in an interleaved format or in any other. Because the ext4 system in conjunction with the

SD card is incapable of real-time audio processing, the recorded file is first saved to RAM

in /tmp/ and then moved to the regular SD card.

31

6. Testing

Testing a system, especially a complex one, requires particular attention to detail

throughout the whole design process. Starting from a simple Verilog module or a C

language function, through independent testing of PL and the Linux kernel driver, to

holistic system tests covering the whole project. While hardware can be tested with the

help of standardized Verilog test benches and then plotted in ModelSIM, some parts have

to be tested in ingenious ways. One such part is the DMA communication and observing

the actual output from the 1 pin GPIO DAC. In this chapter are presented various methods

used throughout the project to assess whether it meets the requirements.

6.1. Verilog Testbenches

The test-bench setup tested only the internals of the system, not the Avalon-MM and

Avalon-ST external communication protocols because simulating them by hand would

be very time-consuming. The ModelSIM simulation software was used to display the

signals changing in time and to properly observe, understand, and then fix the faulty logic.

Because two distinct clock domains are crossed in this project, debugging it proved to be

quite challenging, especially with the SignalTap software, which requires onboard memory

for storing real samples of current-cycle logic.

Figure 6.1. ModelSIM simulation view of E4 note.

A view of ModelSIM simulation waveforms can be found in figure 6.1.

Each component was tested using a test-bench setup containing all the necessary

components, and short-circuiting the pipeline whenever one of them was not being tested.

This in turn allowed for testing more complex scenarios, like turning notes on 1 by 1, or

displaying all pipelined values simultaneously. This allowed for quick elimination of some

rudimentary issues and testing whether the logic was proper. Unfortunately, ModelSIM

32

6. Testing

cannot behave equally to the real hardware, hence some errors slipped through this phase

of testing. Most prominent of them are uninitialized variables, which ModelSIM initializes

on its own and timing issues, especially with the double-clocking.

After testing in this fashion the device was programmed using SignalTap and proof

checked whether simulated values occur on the device. Long compilation times and much

more complex user controls did not appeal to me. Hence, I tested in this fashion only

to observe whether something is occurring and debugged the logic back again in the

simulator. SignalTap allows for quick reflashing of the debugging FPGA code using a JTAG

connection. Once the PL behaved as predicted it could be flashed as .rbf into the SD card

image.

Figure 6.2. ModelSIM simulation of all 4 waveforms.

Some additional results of the ModelSIM displaying various waveforms are visible in

6.2.

6.2. Oscilloscope testing

The 1 pin GPIO connection was utilized to output the signal to an RC circuit which

then filtered out most high-frequency components that may appear in the spectrum. Even

though the signal is perfectly audible in the headphones connected by the audiojack,

and the RC components were chosen to provide cutoff frequency of 15,9kHz, not all

noise was filtered out. After spending much time trying to achieve as noise-free signal as

possible, I deduced what might be the cause of these noises - a DC-DC step-down con-

verter(LTC3612), which operates at 4MHz. The periodic noise and its amplitude is visible

in figure 6.3. Moving the RC circuit closer and further from the DC-DC converter aligns

with my speculations, when closer the amplitude of the noise is much larger, when further

it remains around 140mV. The headphone connection allowed for checking whether

the sound being generated actually matches the MIDI note. Testing this way allowed

33

6. Testing

Figure 6.3. Periodic noise of 4MHz frequency.

to fine-tune the Tuning Word table and discover previously undiscovered errors in the

project, effectively shifting MIDI notes back to their proper octaves.

Figure 6.4. Sine wave DDS waveform for 440Hz

Figures 6.4 - 6.7 show sine, square, sawtooth and triangle waveforms the note A4 -

MIDI 69 - 440Hz. As mentioned above, it is not filtered out completely, nevertheless, the

34

6. Testing

Figure 6.5. Square wave DDS waveform for 440Hz

Figure 6.6. Sawtooth wave DDS waveform for 440Hz

shape is visible. All the notes have corresponding recordings available in the .wav format

for the reception. Although the DAC worked with the clock 100MHz, and the signal was

measured at the output of Lowpass RC circuit, the output was still not free of noise. This

35

6. Testing

Figure 6.7. Triangle wave DDS waveform for 440Hz

quasi-periodic oscillation not filtered by the RC circuit is of about 10MHz periodicity

which does not hint at any reasonable noise source.

6.3. System Testing

Testing software was performed in a left-to-right approach - following the input signal,

first testing the MIDI receiver, then the control kernel driver, finally testing the receiving

kernel driver, and assessing whether the obtained result is as expected. Testing the ALSA

MIDI application was actually quite simple, pressing different MIDI notes and observing

what the output is. Some care had to be taken when composing the control word for the

kernel driver, as not all MIDI fields were used. The control kernel driver, being as simple

as possible was tested by observing whether the proper values appeared on the SignalTap

output.

The most difficult part of the testing was the combined DMA driver and ALSA sound-

card because of a lack of proper documentation and a tedious testing procedure. Testing

was again performed in conjunction with SignalTap software to observe whether any

values were being fed to the mSGDMA FIFO and then observing these values on the

receiving side. The procedure was as follows:

1. Start recording with the arecord command on Linux side

2. Press Launchkey keys to generate NOTE_ON’s

3. Terminate the recording and copy the .wav file using scp to the host

36

6. Testing

4. Play the recording with aplay to observe whether it matches the one heard by the

headphones connected to the DAC

5. Perform a hex dump of the .wav file with xxd

6. Plot the hex data using a python script and observe the waveform (performing endian

conversion)

Choosing the proper parameters for ALSA soundcard and DMA buffer sizes was proba-

bly the most tedious task and in order to check whether the DMA communication was

proceeding without any hiccups a special debug counter was input to the mSGDMA.

Plotting of the values received by such deterministic testing rapidly pinpointed any prob-

lems. Choosing a proper ALSA encoding was also cumbersome, as with S24_LE the signal

appeared to sound almost proper, but when multiple notes were pressed only noise was

audible. Changing the format to full 32-bits S32_LE solved the problem and moreover

allowed to playback this .wav file in every major music player.

Moreover, as discussed in the previous section, a problem I could not debug until the

very end was ALSA overruns which were due to too slow ext4 filesystem. Changing the

filesystem to tmpfs alleviated this instantly.

Figure 6.8. Visible jumps on the rising slope of the sawtooth. Caused by wrong DMA transfers
window (ALSA period) size.

Two figures showing how DMA period size influences the continuity of the waveform

are visible in 6.8 and 6.9.

With proper logs set up and mSGDMA Control Status Register being printed out, all

issues with communication with the device were found out and solved. For the first testing

37

6. Testing

Figure 6.9. Proper continuous sawtooth.

of this communication a special userspace program was written, which would interface

the mSGDMA as a character file and read from it in chunks of data.

6.3.1. Examples

Apart from the examples of every waveform being played at a frequency of 440Hz

additional examples are necessary to prove that the system behaves as properly. In the

file progression.wav one octave of progression may be heard starting from note C4 to C5

and one octave lower and higher in their respective recordings. Additionally, several tracks

displaying the polyphonic abilities of the system are presented. Because the samples are

mixed, their amplitude has to be reduced (by effectively dividing the sample in half or

more), because of that notes played together sound louder than the single notes. Some ad-

ditional examples are provided, such as very low frequency notes and very high frequency

notes playback for a chosen wave-form.

Figure 6.10. Audacity output of an audio recording.

In figure 6.10 an Audacity output of the recorded file may be viewed. Distinct notes

being pressed are visible, as well as periods of silence.

38

6. Testing

6.4. Debugging

Debugging such a complex system requires assessing what the key data is and how

much of it should we monitor. Therefore, in PL special counter variables were introduced

and plotted in the resulting ModelSIM simulation in order to assess which sample the mod-

ule is currently processing. Without such facilitation debugging a pipelined architecture

would be a hefty task.

Analyzing kernel Oopses was also insightful to debug undocumented ALSA code which

misbehaved. Proper logging and logging levels were indispensable in debugging all issues

in the kernel driver. Without both ALSA and ALSA-lib (arecord and aplay) source code, it

would have been almost impossible to orient oneself in the error messages these libraries

outputted.

6.5. Timing and Delays

Since this project is meant to be highly accurate and with minimal delays, proper

choices of clocks and timing domains were essential. There are multiple choke-points

that incur delays and these are discussed in more detail in this chapter. Most notable of

which are: MIDI command input reading and dispatching, generating the DDS sample,

and DMA data transfer.

6.5.1. Software delays

The delays in the software are minuscule and can only be alleviated with the usage of

RT patched kernel or tweaking some scheduler related settings. Nevertheless, browsing

through audio forums I decided it is not worth changing the default settings. Delays that I

directly measured and modified were in the DMA driver, and these had a major impact on

the quality of the recorded audio file. Starting from normal low-resolution Linux kernel

timers, I could observe various delays and non-deterministic interrupts being generated

due to the low accuracy of these timers. Replacing them with high-resolution timers

reduced the issue, and as mentioned in subsectionSystem Testing the last glitches and

delays were removed by the usage of tmpfs instead of ext4.

6.5.2. Hardware delays

Contrary to software delays, hardware delays were almost wholly reducible by accurate

programming and careful control of enabling signals. In the table 6.1. Because some

signals may be generated in fewer number of cycles than other, the delay measured on

the oscilloscope corresponds to the sinewave generation. It is visible that the delays are

marginal and due to efficient filter choice and pipelining approach these delays will not

grow very significantly if one decides to support more simultaneous samples generation. In

figure 6.11 the measured delay between NOTE_ON signal and start of waveform generation

is measured. It can be observed that the delay is about 200 microseconds, which given a

39

6. Testing

Table 6.1. Synthesis delays

Step Delay (cycles) Delay (ns)

Acquire 2 20
Phase increment 1 10
Sine calculation 4 40

Filter 3 30
Mixer 10 100

Total delay: 20 200

Figure 6.11. Delay between NOTE_ON and the waveform being generated.

96kHz sampling rate amounts to about 20 samples delay, which at this sampling rate is

minuscule. Because the sampling rate is much lower than the internal FPGA generation

rate, these delays are mostly due to the internal sampling clock speed and not due to the

generation process.

40

7. Results

High-quality sound output was achieved, slightly deteriorated on the analog side

because of the usage of a single-bit Sigma-Delta DAC. However, the signal outputted via

the ALSA driver meets the project requirements. As shown in the preceding paragraph, the

delays are marginal and induced mostly by the software which does not work in real-time

and is subject to the OS scheduler and priority degradation. In accordance with the

project requirements, this delay is not audible and therefore acceptable. The possibility to

playback up to 10 polyphonic sounds is possible, though the amplitudes of all the sounds

have to be scaled in order to prevent overflows on the hardware side (which are of a too

big magnitude to be in step with the mixer’s amplitude-in-phase spreading possibilities).

The system is thus portable and with a simple RC filter of even first order, the audio quality

is decent and noiseless.

The sound can be recorded from the command line and then further processed if one

wishes so. Moreover, it can be processed in real-time if the user wishes for it by means of

connection to the ALSA soundcard this device emulates. Different waveform switching is

also simple and non-intrusive to the sound being played. Because of this, fluent switching

of the waveforms in a round-robin fashion is possible.

7.1. Resource Utilization

Although the De0-Nano-SoC is not a resource-rich platform, it provided even more

than enough resources for a high-quality audio synthesis and filtering. Clever usage of

LUTs and pipelining techniques allowed for hosting an efficient and effective system

onboard. Because this was my first big SoC project, as mentioned before, I based my

solution on the Grand Hardware Reference Design from Intel, which itself comprises some

LE-heavy blocks. Some essential components, such as HPS-FPGA interconnections take

up almost 25% of the board Logic Elements. With the SVF taking up almost half of the

resources used by the synthesizer IP core, the rest is used mostly for the LUTs and registers

required for pipelining. All the multipliers are offloaded to special DSP blocks which

proved to be more than enough contrary to the initial doubts.

On the software side, the necessary components fit in a 512 MB SD card image and

can be reduced even more if one desires so. The binaries are very small and the only

limiting factor is the rootfs and kernel image size. However, because De0-Nano-SoC is

quite formidable in terms of resources, I would consider even expanding the capabilities

of kernel and rootfs with some onboard DSP or even adding an LCD and GUI to the

synthesizer.

The resource utilization for this project is visible in 7.1. As mentioned above, the total

usage of LE’s is less than 50%, which contradicts initial doubts.

41

Figure 7.1. Resource utilization for the project.

8. Conclusions

The project goals were successfully achieved, some were even surpassed and because

of the way the project was structured, further, expansion is possible and uncomplicated.

During the development of this project, I have learned about a variety of subjects, starting

from resolving and debugging hardware issues, through digital signal processing topics

to finish on Linux device drivers and ALSA architecture understanding. The knowledge

gained in these areas will surely allow me to expand upon this project and approach even

more complex systems with more ease.

Of course, no project is without its hardships and wrong decisions, and this one

also suffered from some of them. Notably, first of all, the wrong approach to pipelining

was assumed, instead of sharing resources and incurring delays, there were 10 same

component lanes that had to process samples simultaneously. This of course was too

costly in terms of resources and was quickly replaced with proper pipelining.

Next, the first implementation of sine LUT utilized 32k entries instead of 512 because

it did not utilize any sort of interpolation. This again was too costly and was quickly

replaced. The greatest annoyance in writing the software was with debugging the DMA

communication and falling in step with undocumented ALSA requirements. It required a

significant amount of trial and error to finally fall into place.

Apart from that, some major irritations were encountered with using the Quartus

software. When creating the .sof file which was the FPGA programming code, sometimes

the board froze when programmed with it during runtime. Due to mismatch in the

checksum, the board panicked and rebooted. The error occurs from time to time and is

42

8. Conclusions

fixed with reloading the Quartus project (in turn forcing a new checksum) and rescanning

the Device Chain in JTAG programmer.

There was also a long-unnoticed issue of having wrong sampling clock speed which

initially led to an unsound choice of DMA communication parameters, which when

noticed shed more light on this choice and allowed for a proper understanding of this

communication.

Wrapping up, apart from being a source of valuable information for me, reignited the

dormant musician inside of me and helped me understand some physical and mathemat-

ical concepts that eluded me when I studied music as a child. Since, during my studies

I had an only basic introduction to DSP, FPGA’s, digital and analog electronics, and no

courses on Linux drivers, I wanted this project to be a curriculum-filler for me. After

successfully completing this project I believe these topics are far more familiar to me and I

will be able to apply this knowledge elsewhere.

8.1. Future Work

Naturally, this project can be further expanded, both on the hardware and software

side. Starting from adding basic audio effects in hardware, to capturing a voice and acting

as a vocoder, the device may be significantly expanded. Because currently, there is no

amplitude control and only basic waveshaping possibility, these could be added in the

form of ADSR or mixing the waveforms together. Effects like echo or pitch-bend control

could also be implemented in hardware. Moreover, the addition of LFO would make this

synthesizer an even more complete project. It is also worth mentioning that splitting the

sound to more channels would be an interesting exercise, maybe not only just to two

channels, but the cinematic standards 5.1 and 7.1.

Since the analog signal being currently outputted is not of the greatest quality, if one

wishes to connect this synthesizer directly to an analog system, it would require much

more powerful DAC. Although there exists a CODEC on the board which could be used for

outputting the signal to the analog external peripherals, it has too low bit resolution (14

bits) compared to the 24 bits generated in the FPGA. Hence, if in the future an alternative

way of outputting signal directly from the FPGA wants to be considered, it would probably

require investing in an external DAC.

On the software side, the possibilities are also plentiful. Starting from handling different

MIDI signals and channels, and even software looping of some of them to create a feeling

of a Digital Audio Workstation. The DMA connection is very powerful and currently, it is

barely utilized, nevertheless extremely fast, could be used to transfer some additional data

when the number of channels would be extended. Current throughput of this connection

is: 96′000[1/s]∗4[B] = 384′000[B/s] = 384[kB/s] which would be doubled for each channel

added. As mentioned earlier, with such a powerful board, one could connect an LCD

43

8. Conclusions

display to add GUI capabilities to this system instead of pure command-line control. This

would of course increase the size of the solution, but only slightly.

Some real-time processing of the audio could be added on the software side, but this

would require adding RT patches to the Linux kernel because without them there would

be delays due to non-RT scheduler. JACK audio system would be of much help in this case,

as it was designed with professional audio in mind, and is built on top of ALSA.

8.2. Alternative solutions

Some of the solutions proposed in this project could have been implemented dif-

ferently and will be briefly discussed here. First such major change would be changing

from the LUT based synthesis to for example wavetable synthesis as in [5]. This way

synthesizer can have many complex pre-mixed waveforms that allow the user to have

more different sounds for their use. Implementing it would be nevertheless costly in terms

of resource utilization, but with some clever offloading to the SDRAM, it could be achieved

in a reasonable time.

The filter choice was based on the requirement of variable cutoff frequency to limit

aliasing as much as possible. Instead of such a complicated SVF filter, I could have chosen

for example a cascade of simpler IIR filters or even add an FIR filter for even more filtering

control.

The audio samples transfer from the FPGA to Linux could have been done with the use

of Altera Audio/Video IP Core instead of mSGDMA. However, at the time of starting this

implementation, I did not even know about the existence of such a module, because it is

available in Altera University Program and not documented in the main manual.

44

9. Acknowledgements

In the first place, I would like to thank dr hab. inż. Wojciech M. Zabołotny for his

invaluable guidelines and materials on the subjects of the thesis. They greatly contributed

to my understating of the topic at hand.

Additionally, I would like to thank inż. Adrian Lewczuk and inż. Maciej Urda for

inspiring me for choosing such a topic for the thesis and their advocacy on electronic

subjects.

Lastly, many thanks to the www.reddit.com communities and their users who helped

me garner more knowledge on these topics and understand difficult concepts, especially:

r/FPGA, r/DSP, and r/AskElectronics.

45

References

[1] E. Briggs and S. Veilleux, “FPGA Digital Music Synthesizer”, Master’s thesis, Worces-

ter Polytechnic Institute, 2015.

[2] J. Borko, G. Dulnik, A. Grzelka, A. Łuczak, and A. Paszkowski, “A parametric syn-

thesizer of audio signals on FPGA”, Measurement Automation Monitoring, vol. 61,

no. 07, pp. 367–369, July 2015.

[3] S. R. Chhetri, B. Poudel, S. Ghimire, S. Shresthamali, and D. K. Sharma, “Implemen-

tation of Audio Effect Generator in FPGA”, Nepal Journal of Science and Technology,

vol. 15, no. 1, pp. 89–98, 2014.

[4] S. Gangopadhyay, R. Biswas, and M. Acharya, “Design and implementation of stereo

sound enhancement on FPGA”, International Journal of Electrical, Electronics and

Data Communication, vol. 1, no. 3, pp. 2320–2084, May 2013.

[5] J. Wawrzynek, Final Project Specification - MIDI Sound Synthesizer, https://www-
inst.eecs.berkeley.edu//~cs150/sp02/lectures/spec.pdf, 2002.

[6] W. M. Zabołotny, “DMA implementations for FPGA-based data acquisition systems”,

in Proceedings Volume 10445, SPIE, 2017.

[7] Embedded Peripherals IP User Guide, 2020.

[8] S. Hauke, Using the mSGDMA IP: An introduction, http://blog.reds.ch/?p=835.

[9] T. Iwai, Writing an ALSA Driver, https://dri.freedesktop.org/docs/drm/
sound/kernel-api/writing-an-alsa-driver.html.

[10] C. J. Dutton, FramesPeriods, https://www.alsa-project.org/main/index.
php/FramesPeriods.

[11] S. Dimitrov and S. Serafin, “Minivosc - a minimal virtual oscillator driver for ALSA(Advanced

Linux Sound Architecture”, in Proceedings of the Linux Audio Conference 2012,

CCRMA, Stanford University, 2012.

[12] ——, Minivosc, https://www.alsa-project.org/wiki/Minivosc.

[13] C. Rockmore, Method for Theremin, http://www.electrotheremin.com/claramethod.
html, 1998.

[14] N. Awde, Mellotron: The Machines and the Musicians that Revolutionised Rock.

Bennet & Bloom, 2008.

[15] M. Vail, The Hammond Organ: Beauty in the B. Backbeat Books, 2002.

[16] A. Devices, Fundamentals of Direct Digital Synthesis (DDS), https://www.analog.
com/media/en/training-seminars/tutorials/MT-085.pdf.

[17] D. Vandenneucker, MIDI tutorial for programmers, http://www.music-software-
development.com/midi-tutorial.html.

[18] W. M. Zabołotny, 2nd Order Sigma-Delta DAC, https://opencores.org/projects/
sigma_delta_dac_dual_loop, 2012.

[19] JACK, JACK Audio Connection Kit, https://jackaudio.org/.

[20] W. Joe, Note names, MIDI numbers and frequencies, https://newt.phys.unsw.
edu.au/jw/notes.html.

47

https://www-inst.eecs.berkeley.edu//~cs150/sp02/lectures/spec.pdf
https://www-inst.eecs.berkeley.edu//~cs150/sp02/lectures/spec.pdf
http://blog.reds.ch/?p=835
https://dri.freedesktop.org/docs/drm/sound/kernel-api/writing-an-alsa-driver.html
https://dri.freedesktop.org/docs/drm/sound/kernel-api/writing-an-alsa-driver.html
https://www.alsa-project.org/main/index.php/FramesPeriods
https://www.alsa-project.org/main/index.php/FramesPeriods
https://www.alsa-project.org/wiki/Minivosc
http://www.electrotheremin.com/claramethod.html
http://www.electrotheremin.com/claramethod.html
https://www.analog.com/media/en/training-seminars/tutorials/MT-085.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-085.pdf
http://www.music-software-development.com/midi-tutorial.html
http://www.music-software-development.com/midi-tutorial.html
https://opencores.org/projects/sigma_delta_dac_dual_loop
https://opencores.org/projects/sigma_delta_dac_dual_loop
https://jackaudio.org/
https://newt.phys.unsw.edu.au/jw/notes.html
https://newt.phys.unsw.edu.au/jw/notes.html

9. References

[21] G. Dan, Building a quarter sine-wave lookup table, https://newt.phys.unsw.
edu.au/jw/notes.html.

[22] J. E. Volder, “The CORDIC Trigonometric Computing Technique”, IRE Transactions

on Electronic Computers, September 1959.

[23] C. Hal, Musical applications of microprocessors. Hasbrouck Heights, N.J.: Hayden

Book Co., 1985.

[24] S. Andrew, “Solving the continuous SVF equations using trapeizodal integration

and equivalent currents”, Cytomic, Tech. Rep., 2013.

[25] G. Peacock, Building latest bootloaders for soc fpga devices, https://rocketboards.
org/foswiki/Documentation/BuildingBootloader.

[26] Rocketboards, Embedded linux beginners guide, https://rocketboards.org/
foswiki/Documentation/EmbeddedLinuxBeginnerSGuide.

[27] J. Duchniewicz, How to set up linux environment on de0-nano soc, https://docs.
google.com/document/d/1INlbTnX7lRPMpKtmacp4uEmOT8S_Sv-j8qElCnHfyQI/
edit?usp=sharing.

[28] Intel, Linux kernel repository, https://github.com/altera-opensource/linux-
socfpga.

48

https://newt.phys.unsw.edu.au/jw/notes.html
https://newt.phys.unsw.edu.au/jw/notes.html
https://rocketboards.org/foswiki/Documentation/BuildingBootloader
https://rocketboards.org/foswiki/Documentation/BuildingBootloader
https://rocketboards.org/foswiki/Documentation/EmbeddedLinuxBeginnerSGuide
https://rocketboards.org/foswiki/Documentation/EmbeddedLinuxBeginnerSGuide
https://docs.google.com/document/d/1INlbTnX7lRPMpKtmacp4uEmOT8S_Sv-j8qElCnHfyQI/edit?usp=sharing
https://docs.google.com/document/d/1INlbTnX7lRPMpKtmacp4uEmOT8S_Sv-j8qElCnHfyQI/edit?usp=sharing
https://docs.google.com/document/d/1INlbTnX7lRPMpKtmacp4uEmOT8S_Sv-j8qElCnHfyQI/edit?usp=sharing
https://github.com/altera-opensource/linux-socfpga
https://github.com/altera-opensource/linux-socfpga

List of Symbols and Abbreviations

ADC – Analog to Digital Converter

ALSA – Advanced Linux Sound Architecture

ASIC – Application Specific Integrated Circuit

DAC – Digital to Analog Converter

DDS – Direct Digital Synthesis

DLL – Delay Locked Loop

DMA – Direct Memory Access

DSP – Digital Signal Processing

DTS – Device Tree Structure

EiTI – Wydział Elektroniki i Technik Informacyjnych

FIFO – First-in First-out

FPGA – Field Programmable Gate Array

GPIO – General Purpose IO

HDL – Hardware Description Language

IDE – Integrated Development Environment

JACK – JACK Audio Connection Kit

JTAG – Joint Test Action Group

LE – Logic Elements

LKM – Loadable Kernel Module

MIDI – Musical Instrument Digital Interface

NCO – Numerically Controlled Oscillator

PL – Programmable Logic

PLL – Phase Locked Loop

PW – Politechnika Warszawska

SoC – System on a Chip

List of Figures

2.1 A Minimoog analog synthesizer. 13

2.2 The difference between subtractive and additive synthesis techniques. 15

3.1 De0-Nano-SoC development board . 18

3.2 Schematic of the De0-Nano-SoC development board 18

3.3 Novation Launchkey MINI keyboard . 19

3.4 High-level overview of the system. 21

4.1 A view of pipelining. 22

4.2 Sine generation overview. 22

4.3 Sine wave symmetry. 23

4.4 A Lowpass State Variable Filter block diagram. 26

49

5.1 A software operation flowchart. 28

6.1 ModelSIM simulation view of E4 note. 32

6.2 ModelSIM simulation of all 4 waveforms. 33

6.3 Periodic noise of 4MHz frequency. 34

6.4 Sine wave DDS waveform for 440Hz . 34

6.5 Square wave DDS waveform for 440Hz . 35

6.6 Sawtooth wave DDS waveform for 440Hz . 35

6.7 Triangle wave DDS waveform for 440Hz . 36

6.8 Visible jumps on the rising slope of the sawtooth. Caused by wrong DMA

transfers window (ALSA period) size. 37

6.9 Proper continuous sawtooth. 38

6.10 Audacity output of an audio recording. 38

6.11 Delay between NOTE_ON and the waveform being generated. 40

7.1 Resource utilization for the project. 42

List of Appendices

1. Verilog Code . 51

2. C and Python code . 62

50

Appendix 1. Verilog Code

Listing 1. synthesizer_top.v

1 / / Top l e v e l module f o r Synthesizer p r o j e c t

2

3 module synthesizer_top_p (input clk ,

4 input reset ,

5 input avs_s0_write ,

6 input avs_s0_read ,

7 input [3 1 : 0] avs_s0_writedata ,

8 output [3 1 : 0] avs_s0_readdata ,

9 output o_dac_out ,

10 output reg [3 1 : 0] aso_ss0_data ,

11 output reg aso_ss0_valid) ;

12

13 reg [1 5 : 0] r_oneshot_data ;

14 reg clk_en ;

15 wire signed [2 3 : 0] w_fifo_out ;

16 reg signed [2 3 : 0] r _ f i f o _ i n ;

17 reg r_wr_req , r_rd_req ;

18 wire w_full , w_empty ;

19

20 / / DAC connections

21 reg signed [2 3 : 0] r_dac_in ;

22

23 wire signed [2 3 : 0] w_osignal ;

24 wire w_rdy ;

25 wire signed [2 3 : 0] w_mixed_sample ;

26

27 wire w_clk_96k_en ;

28

29 slow_clk_en #(100_000_000 , 96_000) clk_96_en (. clk (clk) ,

30 . r s t (re set) ,

31 . clk_en (w_clk_96k_en)) ;

32

33 bank_manager_p bm(. clk (clk) ,

34 . clk_en (clk_en) ,

35 . r eset (rese t) ,

36 . i_data (r_oneshot_data) ,

37 . o_signal (w_osignal)) ;

38

39 f i f o mixed_samples_fifo (. data (r _ f i f o _ i n) ,

40 . rdclk (clk) ,

41 . rdreq (r_rd_req) ,

42 . wrclk (clk) ,

43 . wrreq (r_wr_req) ,

44 . q(w_fifo_out) ,

45 . rdempty (w_empty) ,

46 . w r f u l l (w_full)) ;

47

48 mixer mix (. c lk (clk) ,

49 . clk_en (clk_en) ,

50 . r s t (re set) ,

51 . i_data (w_osignal >>> 1) ,

52 . o_mixed (w_mixed_sample) ,

53 . o_rdy (w_rdy)) ;

54

55 dac_dsm2_top dac (. din (r_dac_in) ,

56 . dout (o_dac_out) ,

57 . clk (clk) ,

58 . n_rst (~ r eset)) ;

59

60 i n i t i a l begin

61 r_oneshot_data = 16 ’b0 ;

62 clk_en = 1 ’b1 ;

63 r _ f i f o _ i n = 24 ’b0 ;

64 r_wr_req = 1 ’b0 ;

65 r_rd_req = 1 ’b0 ;

66 r_dac_in = 24 ’b0 ;

67 aso_ss0_data = 32 ’b0 ;

68 aso_ss0_valid = 1 ’b0 ;

69 end

70

71 / / generator and system clock

72 always @ (posedge clk or posedge re set) begin

73 i f (re set) begin

74 r_oneshot_data <= 16 ’b0 ;

75 r _ f i f o _ i n <= 24 ’b0 ;

76 r_wr_req <= 1 ’b0 ;

77 r_rd_req <= 1 ’b0 ;

78 clk_en <= 1 ’b0 ;

79 aso_ss0_data <= 32 ’b0 ;

51

80 aso_ss0_valid <= 1 ’b0 ;

81 end else begin

82 / / written enough samples , wait unti l f r e e s l o t available

83 i f (w_full) begin

84 clk_en <= 1 ’b0 ;

85 r_wr_req <= 1 ’b0 ;

86 end else begin

87 / / i f got a f u l l 10 batch

88 i f (w_rdy && ! r_wr_req) begin

89 r _ f i f o _ i n <= w_mixed_sample ;

90 r_wr_req <= 1 ’b1 ;

91 / / s ignal wr_req j u s t f o r a one c y c l e

92 end else begin

93 r_wr_req <= 1 ’b0 ;

94 end

95 clk_en <= 1 ’b1 ;

96 end

97

98 / / reading l o g i c −> passing i t

99 / / clock_en f o r DAC sampling and outputing samples to mSGDMA

100 i f (w_clk_96k_en) begin

101 i f (! w_empty) begin

102 r_rd_req <= 1 ’b1 ;

103 aso_ss0_valid <= 1 ’b1 ;

104 r_dac_in <= w_fifo_out ;

105 aso_ss0_data <= { { 8 { 1 ’ b0 } } , w_fifo_out [7 : 0] , w_fifo_out [1 5 : 8] ,

106 w_fifo_out [2 3 : 1 6] } ;

107 end

108 end else begin

109 r_rd_req <= 1 ’b0 ;

110 aso_ss0_valid <= 1 ’b0 ;

111 end

112

113 / / Avalon communication l o g i c

114 i f (avs_s0_write) begin

115 r_oneshot_data <= avs_s0_writedata [1 5 : 0] ;

116 end else begin

117 / / keep the input value to BM

118 r_oneshot_data <= 16 ’b0 ;

119 end

120 end

121 end

122

123 endmodule

Listing 2. bank_manager.v

1 / / Pipelined bank manager

2

3 module bank_manager_p (input clk ,

4 input clk_en ,

5 input reset ,

6 input [1 5 : 0] i_data ,

7 output reg signed [2 3 : 0] o_signal) ;

8

9 parameter NBANKS = 10;

10 localparam SINE = 2 ’b00 , SQUARE = 2 ’b01 , SAWTOOTH = 2 ’b10 , TRIANGLE = 2 ’b11 ;

11

12 reg [6 : 0] midi_vals [NBANKS−1 : 0] ;

13 reg [6 : 0] r_cur_midi ;

14

15 reg [1 : 0] waveform ;

16 reg r_sine_en , r_square_en , r_sawtooth_en , r_tr iangle_en ;

17

18 wire w_pb_valid , w_wave_valid , w_qs_valid , w_square_valid ,

19 w_sawtooth_valid , w_triangle_valid , w_svf_valid ;

20 wire signed [2 3 : 0] w_wave_out , w_square_out , w_sawtooth_out ,

21 w_triangle_out , w_qs_out , w_svf_out ;

22 wire [2 3 : 0] w_pb_out ;

23 wire [6 : 0] w_pb_o_midi , w_wave_o_midi , w_qs_o_midi , w_square_o_midi ,

24 w_sawtooth_o_midi , w_triangle_o_midi , w_svf_o_midi ;

25

26 wire w_cmd;

27 wire [6 : 0] w_midi ;

28

29 assign w_cmd = i_data [1 5] ;

30 assign w_midi = i_data [1 4 : 8] ;

31 assign w_velocity = i_data [7 : 0] ;

32

33 phase_bank_p pb (. clk (clk) ,

34 . clk_en (clk_en) ,

35 . r s t (rese t) ,

36 . i_midi (r_cur_midi) ,

37 . o_midi (w_pb_o_midi) ,

52

38 . o_valid (w_pb_valid) ,

39 . o_phase (w_pb_out)) ;

40

41 quarter_sine_p sine (. c lk (clk) ,

42 . clk_en (clk_en) ,

43 . wav_en (r_sine_en) ,

44 . r s t (reset) ,

45 . i_midi (w_pb_o_midi) ,

46 . o_midi (w_qs_o_midi) ,

47 . i_phase (w_pb_out) ,

48 . i _ v a l i d (w_pb_valid) ,

49 . o_valid (w_qs_valid) ,

50 . o_sine (w_qs_out)) ;

51

52 square_wave square (. c lk (clk) ,

53 . clk_en (clk_en) ,

54 . wav_en (r_square_en) ,

55 . r s t (reset) ,

56 . i_midi (w_pb_o_midi) ,

57 . o_midi (w_square_o_midi) ,

58 . i_phase (w_pb_out) ,

59 . i _ v a l i d (w_pb_valid) ,

60 . o_valid (w_square_valid) ,

61 . o_square (w_square_out)) ;

62

63 sawtooth_wave sawtooth (. clk (clk) ,

64 . clk_en (clk_en) ,

65 . wav_en (r_sawtooth_en) ,

66 . r s t (r eset) ,

67 . i_midi (w_pb_o_midi) ,

68 . o_midi (w_sawtooth_o_midi) ,

69 . i_phase (w_pb_out) ,

70 . i _ v a l i d (w_pb_valid) ,

71 . o_valid (w_sawtooth_valid) ,

72 . o_sawtooth (w_sawtooth_out)) ;

73

74 triangle_wave t r i a n g l e (. c lk (clk) ,

75 . clk_en (clk_en) ,

76 . wav_en (r_tr iangle_en) ,

77 . r s t (r eset) ,

78 . i_midi (w_pb_o_midi) ,

79 . o_midi (w_triangle_o_midi) ,

80 . i_phase (w_pb_out) ,

81 . i _ v a l i d (w_pb_valid) ,

82 . o_valid (w_triangle_val id) ,

83 . o_tr iangle (w_triangle_out)) ;

84

85 s t a t e _ v a r i a b l e _ f i l t e r _ i i r _ p SVF (. clk (clk) ,

86 . clk_en (clk_en) ,

87 . r s t (reset) ,

88 . i_midi (w_wave_o_midi) ,

89 . o_midi (w_svf_o_midi) ,

90 . i_data (w_wave_out) ,

91 . i _ v a l i d (w_wave_valid) ,

92 . o_valid (w_svf_valid) ,

93 . o _ f i l t e r e d (w_svf_out)) ;

94

95

96 assign w_wave_out = w_qs_out | w_sawtooth_out | w_triangle_out ;

97 assign w_wave_o_midi = w_qs_o_midi | w_sawtooth_o_midi | w_triangle_o_midi ;

98 assign w_wave_valid = w_qs_valid | w_sawtooth_valid | w_triangle_val id ;

99

100 integer v_idx ;

101 integer i ;

102

103 i n i t i a l begin

104 for (i = 0 ; i < NBANKS; i = i + 1) begin

105 midi_vals [i] = 7 ’h0 ;

106 end

107 r_cur_midi = 7 ’b0 ;

108 waveform = 2 ’b0 ;

109 r_sine_en = 1 ’b1 ;

110 r_square_en = 1 ’b0 ;

111 r_sawtooth_en = 1 ’b0 ;

112 r_tr iangle_en = 1 ’b0 ;

113 o_signal = 24 ’b0 ;

114 v_idx = 0 ;

115 end

116

117 always @(posedge clk or posedge re set) begin

118 i f (re set) begin

119 for (i = 0 ; i < NBANKS; i = i + 1) begin

120 midi_vals [i] <= 7 ’h0 ;

121 end

122 / / and more . . .

53

123 r_cur_midi <= 7 ’b0 ;

124 waveform <= 2 ’b0 ;

125 r_sine_en <= 1 ’b1 ;

126 r_square_en <= 1 ’b0 ;

127 r_sawtooth_en <= 1 ’b0 ;

128 r_tr iangle_en <= 1 ’b0 ;

129 o_signal <= 24 ’b0 ;

130 v_idx <= 0 ;

131 / / handle commands

132 end else begin

133 i f (w_cmd == 1) begin

134 i f (w_midi == 7 ’b0 && w_velocity == 8 ’b0) begin / / CHANGE_WAVE

135 i f (waveform == TRIANGLE) begin / / turn on sine

136 waveform <= SINE ;

137 r_sine_en <= 1 ’b1 ;

138 r_square_en <= 1 ’b0 ;

139 r_sawtooth_en <= 1 ’b0 ;

140 r_tr iangle_en <= 1 ’b0 ;

141 end else i f (waveform == SINE) begin / / turn on square

142 waveform <= SQUARE;

143 r_sine_en <= 1 ’b0 ;

144 r_square_en <= 1 ’b1 ;

145 r_sawtooth_en <= 1 ’b0 ;

146 r_tr iangle_en <= 1 ’b0 ;

147 end else i f (waveform == SQUARE) begin / / turn on saw

148 waveform <= SAWTOOTH;

149 r_sine_en <= 1 ’b0 ;

150 r_square_en <= 1 ’b0 ;

151 r_sawtooth_en <= 1 ’b1 ;

152 r_tr iangle_en <= 1 ’b0 ;

153 end else i f (waveform == SAWTOOTH) begin / / turn on t r i a n g l e

154 waveform <= TRIANGLE ;

155 r_sine_en <= 1 ’b0 ;

156 r_square_en <= 1 ’b0 ;

157 r_sawtooth_en <= 1 ’b0 ;

158 r_tr iangle_en <= 1 ’b1 ;

159 end

160 end else i f (midi_vals [0] == 7 ’h0) begin

161 midi_vals [0] <= w_midi ;

162 end else i f (midi_vals [1] == 7 ’h0) begin

163 midi_vals [1] <= w_midi ;

164 end else i f (midi_vals [2] == 7 ’h0) begin

165 midi_vals [2] <= w_midi ;

166 end else i f (midi_vals [3] == 7 ’h0) begin

167 midi_vals [3] <= w_midi ;

168 end else i f (midi_vals [4] == 7 ’h0) begin

169 midi_vals [4] <= w_midi ;

170 end else i f (midi_vals [5] == 7 ’h0) begin

171 midi_vals [5] <= w_midi ;

172 end else i f (midi_vals [6] == 7 ’h0) begin

173 midi_vals [6] <= w_midi ;

174 end else i f (midi_vals [7] == 7 ’h0) begin

175 midi_vals [7] <= w_midi ;

176 end else i f (midi_vals [8] == 7 ’h0) begin

177 midi_vals [8] <= w_midi ;

178 end else i f (midi_vals [9] == 7 ’h0) begin

179 midi_vals [9] <= w_midi ;

180 end / / f a i l u r e to playback y e t another sound should be si gn a l l e d to user ?

181 end else i f (w_cmd == 0) begin

182 i f (w_midi == 7 ’ h7f) begin / / STOP_ALL

183 for (i = 0 ; i < NBANKS; i = i + 1) begin

184 midi_vals [i] <= 7 ’h0 ;

185 end

186 end else i f (midi_vals [0] == w_midi) begin

187 midi_vals [0] <= 7 ’h0 ; / / MIDI 0 i s equal to turn o f f

188 end else i f (midi_vals [1] == w_midi) begin

189 midi_vals [1] <= 7 ’h0 ;

190 end else i f (midi_vals [2] == w_midi) begin

191 midi_vals [2] <= 7 ’h0 ;

192 end else i f (midi_vals [3] == w_midi) begin

193 midi_vals [3] <= 7 ’h0 ;

194 end else i f (midi_vals [4] == w_midi) begin

195 midi_vals [4] <= 7 ’h0 ;

196 end else i f (midi_vals [5] == w_midi) begin

197 midi_vals [5] <= 7 ’h0 ;

198 end else i f (midi_vals [6] == w_midi) begin

199 midi_vals [6] <= 7 ’h0 ;

200 end else i f (midi_vals [7] == w_midi) begin

201 midi_vals [7] <= 7 ’h0 ;

202 end else i f (midi_vals [8] == w_midi) begin

203 midi_vals [8] <= 7 ’h0 ;

204 end else i f (midi_vals [9] == w_midi) begin

205 midi_vals [9] <= 7 ’h0 ;

206 end

207 end

54

208

209 / / handle dispatching midi with valid info

210 i f (clk_en) begin

211 r_cur_midi <= midi_vals [v_idx] ; / / i f 7 ’h0 then invalid

212

213 i f (w_svf_valid) begin

214 o_signal <= w_svf_out ;

215 end else i f (w_square_valid) begin / / Bypass the SVF f o r square

216 o_signal <= w_square_out >>> 1 ;

217 end else begin

218 o_signal <= 24 ’b0 ;

219 end

220

221 i f (v_idx == NBANKS − 1)

222 v_idx <= 0 ;

223 else

224 v_idx <= v_idx + 1 ;

225 end

226 end

227 end

228 endmodule

Listing 3. quarter_sine.v

1 / / Quarter−wave sine l o g i c Pipelined

2

3 module quarter_sine_p (input clk ,

4 input clk_en ,

5 input wav_en ,

6 input rst ,

7 input [6 : 0] i_midi ,

8 output reg [6 : 0] o_midi ,

9 input [2 3 : 0] i_phase ,

10 input i _ v a l i d ,

11 output reg o_valid ,

12 output reg signed [2 3 : 0] o_sine) ;

13 parameter NBANKS = 10;

14

15 reg r_negate_1 [1 : 0] [NBANKS−1 : 0] ;

16 reg r_negate_2 [1 : 0] [NBANKS−1 : 0] ;

17 reg signed [1 5 : 0] r_lut_sine_1 [NBANKS−1 : 0] ;

18 reg signed [1 5 : 0] r_lut_sine_2 [NBANKS−1 : 0] ;

19

20 / / f o r buffering values

21 reg v al i d [2 : 0] ;

22 reg [6 : 0] midi [2 : 0] ;

23

24 reg [8 : 0] r_cur_index_1 , r_cur_index_2 ;

25 wire [1 5 : 0] w_sine_out_1 , w_sine_out_2 ;

26

27 / / next step phase

28 wire [1 0 : 0] i_phase_next ;

29 reg [1 2 : 0] r_phase_frac [1 : 0] [NBANKS−1 : 0] ;

30

31 reg signed [1 5 : 0] r_mult_1a , r_mult_2a ;

32 reg [1 3 : 0] r_mult_1b , r_mult_2b ;

33 wire signed [2 9 : 0] w_result_1 , w_result_2 ;

34 wire signed [2 9 : 0] w_result_added ;

35

36 / / LUTs of s i z e 512 outputting 16 b i t sine values to be interpolated

37 quarter_sine_lut slut_1 (. i_phase (r_cur_index_1) ,

38 . o_val (w_sine_out_1)) ;

39 / / d i f f e r e n c e between them i s 2**13

40 / / so interpolation distance i s 8192

41 quarter_sine_lut slut_2 (. i_phase (r_cur_index_2) ,

42 . o_val (w_sine_out_2)) ;

43

44 / / mult

45 sine_mult mult_1 (. dataa (r_mult_1a) ,

46 . datab (r_mult_1b) ,

47 . r e s u l t (w_result_1)) ;

48 sine_mult mult_2 (. dataa (r_mult_2a) ,

49 . datab (r_mult_2b) ,

50 . r e s u l t (w_result_2)) ;

51

52 integer v_idx ;

53 integer i , j ;

54

55 assign i_phase_next = i_phase [2 3 : 1 3] + 11 ’b1 ;

56 / / t h i s i s the NEXT sample , our LUT has e n t r i e s

57 / / from 1 to 2 ** 11 indexed with 11 b i t s

58 assign w_result_added = w_result_1 + w_result_2 ;

59

60 i n i t i a l begin

55

61 o_sine = 24 ’b0 ;

62 v_idx = 8 ; / / delay of 2 computation blocks

63 r_cur_index_1 = 9 ’b0 ;

64 r_cur_index_2 = 9 ’b0 ;

65 r_mult_1a = 16 ’b0 ;

66 r_mult_2a = 16 ’b0 ;

67 r_mult_1b = 14 ’b0 ;

68 r_mult_2b = 14 ’b0 ;

69 for (i = 0 ; i < NBANKS; i = i + 1) begin

70 for (j = 0 ; j < 2 ; j = j + 1) begin

71 r_negate_1 [j] [i] = 1 ’b0 ;

72 r_negate_2 [j] [i] = 1 ’b0 ;

73 r_phase_frac [j] [i] = 13 ’b0 ;

74 end

75 r_lut_sine_1 [i] = 16 ’b0 ;

76 r_lut_sine_2 [i] = 16 ’b0 ;

77 end

78 for (i = 0 ; i < 3 ; i = i + 1) begin

79 v al id [i] = 1 ’b0 ;

80 midi [i] = 7 ’b0 ;

81 end

82 o_midi = 7 ’b0 ;

83 end

84

85 always @(posedge clk or posedge r s t) begin

86 i f (r s t) begin

87 o_sine <= 16 ’b0 ;

88 v_idx <= 8 ; / / delay of 2 computation blocks

89 r_cur_index_1 <= 9 ’b0 ;

90 r_cur_index_2 <= 9 ’b0 ;

91 r_mult_1a <= 16 ’b0 ;

92 r_mult_2a <= 16 ’b0 ;

93 r_mult_1b <= 14 ’b0 ;

94 r_mult_2b <= 14 ’b0 ;

95 for (i = 0 ; i < NBANKS; i = i + 1) begin

96 for (j = 0 ; j < 2 ; j = j + 1) begin

97 r_negate_1 [j] [i] <= 1 ’b0 ;

98 r_negate_2 [j] [i] <= 1 ’b0 ;

99 r_phase_frac [j] [i] <= 13 ’b0 ;

100 end

101 r_lut_sine_1 [i] <= 16 ’b0 ;

102 r_lut_sine_2 [i] <= 16 ’b0 ;

103 end

104 for (i = 0 ; i < 3 ; i = i + 1) begin

105 v al i d [i] <= 1 ’b0 ;

106 midi [i] <= 7 ’b0 ;

107 end

108 o_midi <= 7 ’b0 ;

109 end else i f (clk_en && wav_en) begin

110 / / c lock one

111 i f (i _ v a l i d) begin

112 r_negate_1 [0] [v_idx] <= i_phase [2 3] ; / / negate or not

113 r_negate_2 [0] [v_idx] <= i_phase_next [1 0] ;

114 r_cur_index_1 <= i_phase [2 2] ?

115 ~i_phase [2 1 : 1 3] :

116 i_phase [2 1 : 1 3] ;

117 / / i n v e r t index i f 2nd MSB i s s e t

118 r_cur_index_2 <= i_phase_next [9] ?

119 ~i_phase_next [8 : 0] :

120 i_phase_next [8 : 0] ;

121 / / take j u s t the lower part

122 / / s t o r e current phase f r a c t i o n

123 r_phase_frac [0] [v_idx] <= i_phase [1 2 : 0] ;

124 end

125

126 / / c lock two

127 i f (v al id [0]) begin

128 i f (v_idx == 0) begin

129 r_lut_sine_1 [NBANKS − 1] <= w_sine_out_1 ;

130 r_lut_sine_2 [NBANKS − 1] <= w_sine_out_2 ;

131 / / to avoid overwriting

132 r_negate_1 [1] [NBANKS − 1] <= r_negate_1 [0] [NBANKS − 1] ;

133 r_negate_2 [1] [NBANKS − 1] <= r_negate_2 [0] [NBANKS − 1] ;

134 r_phase_frac [1] [NBANKS − 1] <= r_phase_frac [0] [NBANKS − 1] ;

135 end else begin

136 r_lut_sine_1 [v_idx − 1] <= w_sine_out_1 ;

137 r_lut_sine_2 [v_idx − 1] <= w_sine_out_2 ;

138 r_negate_1 [1] [v_idx − 1] <= r_negate_1 [0] [v_idx − 1] ;

139 r_negate_2 [1] [v_idx − 1] <= r_negate_2 [0] [v_idx − 1] ;

140 r_phase_frac [1] [v_idx − 1] <= r_phase_frac [0] [v_idx − 1] ;

141 end

142 end

143

144 / / c lock three

145 i f (v al id [1]) begin / / output only valid values

56

146 i f (v_idx == 0) begin

147 i f (r_negate_1 [1] [NBANKS − 2])

148 r_mult_1a <= −r_lut_sine_1 [NBANKS − 2] ;

149 else

150 r_mult_1a <= r_lut_sine_1 [NBANKS − 2] ;

151

152 i f (r_negate_2 [1] [NBANKS − 2])

153 r_mult_2a <= −r_lut_sine_2 [NBANKS − 2] ;

154 else

155 r_mult_2a <= r_lut_sine_2 [NBANKS − 2] ;

156

157 r_mult_1b <= 14 ’h2000 − r_phase_frac [1] [NBANKS − 2] ;

158 r_mult_2b <= r_phase_frac [1] [NBANKS − 2] ;

159 end else i f (v_idx == 1) begin

160 i f (r_negate_1 [1] [NBANKS − 1])

161 r_mult_1a <= −r_lut_sine_1 [NBANKS − 1] ;

162 else

163 r_mult_1a <= r_lut_sine_1 [NBANKS − 1] ;

164

165 i f (r_negate_2 [1] [NBANKS − 1])

166 r_mult_2a <= −r_lut_sine_2 [NBANKS − 1] ;

167 else

168 r_mult_2a <= r_lut_sine_2 [NBANKS − 1] ;

169

170 r_mult_1b <= 14 ’h2000 − r_phase_frac [1] [NBANKS − 1] ;

171 r_mult_2b <= r_phase_frac [1] [NBANKS − 1] ;

172 end else begin

173 i f (r_negate_1 [1] [v_idx − 2])

174 r_mult_1a <= −r_lut_sine_1 [v_idx − 2] ;

175 else

176 r_mult_1a <= r_lut_sine_1 [v_idx − 2] ;

177

178 i f (r_negate_2 [1] [v_idx − 2])

179 r_mult_2a <= −r_lut_sine_2 [v_idx − 2] ;

180 else

181 r_mult_2a <= r_lut_sine_2 [v_idx − 2] ;

182

183 r_mult_1b <= 14 ’h2000 − r_phase_frac [1] [v_idx − 2] ;

184 r_mult_2b <= r_phase_frac [1] [v_idx − 2] ;

185 end

186 end

187

188 / / c lock four −> multiply r e s u l t

189 i f (v al id [2]) begin

190 o_sine <= w_result_added [2 9 : 6] ;

191 end else begin

192 o_sine <= 24 ’b0 ;

193 end

194

195 / / move valid value

196 val i d [0] <= i _ v a l i d ;

197 val i d [1] <= val i d [0] ;

198 val i d [2] <= val i d [1] ;

199 o_valid <= val i d [2] ;

200

201 / / move midi value

202 midi [0] <= i_midi ;

203 midi [1] <= midi [0] ;

204 midi [2] <= midi [1] ;

205 o_midi <= midi [2] ;

206

207 i f (v_idx == NBANKS − 1)

208 v_idx <= 0 ;

209 else

210 v_idx <= v_idx + 1 ;

211 end else i f (! wav_en) begin

212 o_sine <= 24 ’b0 ;

213 o_midi <= 7 ’b0 ;

214 o_valid <= 1 ’b0 ;

215 end

216 end

217 endmodule

Listing 4. square_wave.v

1 / / A square wave module in 1 c y c l e

2

3 module square_wave (input clk ,

4 input clk_en ,

5 input wav_en ,

6 input rst ,

7 input [6 : 0] i_midi ,

8 output reg [6 : 0] o_midi ,

9 input [2 3 : 0] i_phase ,

57

10 input i _ v a l i d ,

11 output reg o_valid ,

12 output reg signed [2 3 : 0] o_square) ;

13

14 reg signed [2 3 : 0] MAX_SIGNED = { 1 ’ sb0 , {23{1 ’ sb1 } } } ;

15 reg signed [2 3 : 0] MIN_SIGNED = { 1 ’ sb1 , {23{1 ’ sb0 } } } ;

16

17 i n i t i a l begin

18 o_square = 24 ’b0 ;

19 o_midi = 7 ’b0 ;

20 o_valid = 1 ’b0 ;

21 end

22

23 always @(posedge clk or posedge r s t) begin

24 i f (r s t) begin

25 o_square <= 24 ’b0 ;

26 o_midi <= 7 ’b0 ;

27 o_valid <= 1 ’b0 ;

28 end else i f (clk_en && wav_en) begin

29 / / g r e a t e r than half , output −1

30 i f (i_phase >= MIN_SIGNED && i _ v a l i d) begin

31 o_square <= MIN_SIGNED;

32 / / l e s s then half , output 1

33 end else i f (i _ v a l i d) begin

34 o_square <= MAX_SIGNED;

35 end else begin

36 o_square <= 24 ’b0 ;

37 end

38 o_midi <= i_midi ;

39 o_valid <= i _ v a l i d ;

40 end else i f (! wav_en) begin

41 o_square <= 24 ’b0 ;

42 o_midi <= 7 ’b0 ;

43 o_valid <= 1 ’b0 ;

44 end

45 end

46

47 endmodule

Listing 5. state_variable_filter.v

1 / / Pipelined State variable f i l t e r based on Andrew Simper ’ s SVF whitepaper

2 / / https : / / cytomic .com/ f i l e s / dsp / SvfLinearTrapOptimised2 . pdf

3

4 module s t a t e _ v a r i a b l e _ f i l t e r _ i i r _ p (input clk ,

5 input clk_en ,

6 input rst ,

7 input [6 : 0] i_midi ,

8 output reg [6 : 0] o_midi ,

9 input signed [2 3 : 0] i_data ,

10 input i _ v a l i d ,

11 output reg o_valid ,

12 output reg signed [2 3 : 0] o _ f i l t e r e d / / == v2

13) ;

14 parameter NBANKS = 10;

15

16 reg signed [3 9 : 0] v1 [NBANKS−1 : 0] ;

17 reg signed [3 9 : 0] v2 [NBANKS−1 : 0] ;

18 reg signed [3 9 : 0] v3 [NBANKS−1 : 0] ;

19 reg signed [3 9 : 0] ic1eq [NBANKS−1 : 0] ;

20 reg signed [3 9 : 0] ic2eq [NBANKS−1 : 0] ;

21

22 wire signed [3 9 : 0] w_a1 , w_a2 , w_a3 ;

23 wire signed [7 9 : 0] mR_0, mR_1, mR_2, mR_3;

24

25 reg signed [3 9 : 0] r_m_a1 , r_m_a2 , r_m_a3 , r_m_ic1eq , r_m_v3 ;

26

27 / / f o r buffering values

28 reg v al i d [1 : 0] ;

29 reg [6 : 0] midi [1 : 0] ;

30

31 wire signed [3 9 : 0] w_extended_i_data ;

32

33 c o e f f i c i e n t s _ l u t l u t (. i_midi (i_midi) ,

34 . o_a1 (w_a1) ,

35 . o_a2 (w_a2) ,

36 . o_a3 (w_a3)) ;

37

38 lpm_multiplier

39 mult0 (. dataa (r_m_a1) ,

40 . datab (r_m_ic1eq) ,

41 . r e s u l t (mR_0)) ,

42 mult1 (. dataa (r_m_a2) ,

43 . datab (r_m_v3) ,

58

44 . r e s u l t (mR_1)) ,

45 mult2 (. dataa (r_m_a2) ,

46 . datab (r_m_ic1eq) ,

47 . r e s u l t (mR_2)) ,

48 mult3 (. dataa (r_m_a3) ,

49 . datab (r_m_v3) ,

50 . r e s u l t (mR_3)) ;

51

52 integer v_idx ;

53 integer i ;

54

55 assign w_extended_i_data = { { 3 { i_data [2 3] } } , { i_data [2 2 : 0] } , 14 ’b0 } ;

56

57 i n i t i a l begin

58 for (i = 0 ; i < NBANKS; i = i + 1) begin

59 v1 [i] = 40 ’b0 ;

60 v2 [i] = 40 ’b0 ;

61 v3 [i] = 40 ’b0 ;

62 ic1eq [i] = 40 ’b0 ;

63 ic2eq [i] = 40 ’b0 ;

64 end

65 for (i = 0 ; i < 2 ; i = i + 1) begin

66 v al id [i] = 1 ’b0 ;

67 midi [i] = 7 ’b0 ;

68 end

69 r_m_a1 = 40 ’b0 ;

70 r_m_a2 = 40 ’b0 ;

71 r_m_a3 = 40 ’b0 ;

72 r_m_ic1eq = 40 ’b0 ;

73 r_m_v3 = 40 ’b0 ;

74

75 v_idx = 5 ;

76 end

77

78 always @(posedge clk or posedge r s t) begin

79 i f (r s t) begin

80 for (i = 0 ; i < NBANKS; i = i + 1) begin

81 v1 [i] <= 40 ’b0 ;

82 v2 [i] <= 40 ’b0 ;

83 v3 [i] <= 40 ’b0 ;

84 ic1eq [i] <= 40 ’b0 ;

85 ic2eq [i] <= 40 ’b0 ;

86 end

87 for (i = 0 ; i < 2 ; i = i + 1) begin

88 v al id [i] <= 1 ’b0 ;

89 midi [i] <= 7 ’b0 ;

90 end

91 r_m_a1 <= 40 ’b0 ;

92 r_m_a2 <= 40 ’b0 ;

93 r_m_a3 <= 40 ’b0 ;

94 r_m_ic1eq <= 40 ’b0 ;

95 r_m_v3 <= 40 ’b0 ;

96

97 v_idx <= 5 ;

98 end else i f (clk_en) begin

99 / / three c y c l e s of delay − sine−l i k e solution

100 / / f i r s t c y c l e calc c o e f f i c i e n t s −> c l e a r r e g i s t e r s i f midi 00

101 i f (i_midi == 7 ’b0) begin

102 v1 [v_idx] <= 40 ’b0 ;

103 v2 [v_idx] <= 40 ’b0 ;

104 v3 [v_idx] <= 40 ’b0 ;

105 ic1eq [v_idx] <= 40 ’b0 ;

106 ic2eq [v_idx] <= 40 ’b0 ;

107 / / f i l l the lpm_multiplier

108 r_m_a1 <= 40 ’b0 ;

109 r_m_a2 <= 40 ’b0 ;

110 r_m_a3 <= 40 ’b0 ;

111 r_m_ic1eq <= 40 ’b0 ;

112 r_m_v3 <= 40 ’b0 ;

113 end else begin

114 / / f i l l the lpm_multiplier

115 r_m_a1 <= w_a1 ;

116 r_m_a2 <= w_a2 ;

117 r_m_a3 <= w_a3 ;

118 r_m_ic1eq <= ic1eq [v_idx] ;

119 r_m_v3 <= w_extended_i_data − ic2eq [v_idx] ; / / to prevent 1 c y c l e delay

120 / / f i l t e r step

121 v3 [v_idx] <= w_extended_i_data − ic2eq [v_idx] ;

122 end

123

124 / / second c y c l e −> obtain multiplication r e s u l t s

125 i f (v_idx == 0) begin

126 / / remove scal ing f a c t o r due to multiplication

127 v1 [NBANKS − 1] <= (mR_0 >>> 37) + (mR_1 >>> 37) ;

128 v2 [NBANKS − 1] <= ic2eq [NBANKS − 1] + (mR_2 >>> 37) + (mR_3 >>> 37) ;

59

129 end else begin

130 v1 [v_idx − 1] <= (mR_0 >>> 37) + (mR_1 >>> 37) ;

131 v2 [v_idx − 1] <= ic2eq [v_idx − 1] + (mR_2 >>> 37) + (mR_3 >>> 37) ;

132 end

133

134 / / third c y c l e −> l a s t s t e p s and output r e s u l t

135 i f (v_idx == 0) begin

136 ic1eq [NBANKS − 2] <= (v1 [NBANKS − 2] <<< 1) − ic1eq [NBANKS − 2] ;

137 ic2eq [NBANKS − 2] <= (v2 [NBANKS − 2] <<< 1) − ic2eq [NBANKS − 2] ;

138 o _ f i l t e r e d <= { v2 [NBANKS − 2] [3 9] , v2 [NBANKS − 2] [3 6 : 1 4] } ;

139 end else i f (v_idx == 1) begin

140 ic1eq [NBANKS − 1] <= (v1 [NBANKS − 1] <<< 1) − ic1eq [NBANKS − 1] ;

141 ic2eq [NBANKS − 1] <= (v2 [NBANKS − 1] <<< 1) − ic2eq [NBANKS − 1] ;

142 o _ f i l t e r e d <= { v2 [NBANKS − 1] [3 9] , v2 [NBANKS − 1] [3 6 : 1 4] } ;

143 end else begin

144 ic1eq [v_idx − 2] <= (v1 [v_idx − 2] <<< 1) − ic1eq [v_idx − 2] ;

145 ic2eq [v_idx − 2] <= (v2 [v_idx − 2] <<< 1) − ic2eq [v_idx − 2] ;

146 o _ f i l t e r e d <= { v2 [v_idx − 2] [3 9] , v2 [v_idx − 2] [3 6 : 1 4] } ;

147 end

148

149 / / move valid value

150 va l i d [0] <= i _ v a l i d ;

151 va l i d [1] <= va l i d [0] ;

152 o_valid <= va l i d [1] ;

153

154 / / move midi value

155 midi [0] <= i_midi ;

156 midi [1] <= midi [0] ;

157 o_midi <= midi [1] ;

158

159 i f (v_idx == NBANKS − 1)

160 v_idx <= 0 ;

161 else

162 v_idx <= v_idx + 1 ;

163 end

164 end

165

166 endmodule

Listing 6. mixer.v

1 / / D i g i t a l mixer of 10 values − counts to 10 and outputs stored value

2

3 module mixer (input clk ,

4 input clk_en ,

5 input rst ,

6 input signed [2 2 : 0] i_data ,

7 output reg signed [2 3 : 0] o_mixed ,

8 output reg o_rdy) ;

9

10 / / Because Veri log does not l i k e signed numbers ,

11 / / these have to be e x p l i c i t e signed regs

12 reg signed [2 3 : 0] MAX_SIGNED = { 1 ’ sb0 , {23{1 ’ sb1 } } } ;

13 reg signed [2 3 : 0] MIN_SIGNED = { 1 ’ sb1 , {23{1 ’ sb0 } } } ;

14

15 reg signed [2 7 : 0] r_mixed , r_overflow ;

16 integer v_idx ;

17

18 i n i t i a l begin

19 r_mixed = 28 ’b0 ;

20 r_overflow = 28 ’b0 ;

21 o_mixed = 24 ’b0 ;

22 o_rdy = 1 ’b0 ;

23 v_idx = 0 ;

24 end

25

26 always @ (posedge clk or posedge r s t) begin

27 i f (r s t) begin

28 r_mixed <= 28 ’b0 ;

29 r_overflow <= 28 ’b0 ;

30 o_mixed <= 24 ’b0 ;

31 o_rdy <= 1 ’b0 ;

32 v_idx <= 0 ;

33 end

34

35 else i f (clk_en) begin

36 / / handle overflow / underflow

37 / / because in−sync with BM, do everything in 10 c y c l e s ,

38 / / r e s e t r_mixed and output o_mixed + i_data in range

39 i f (v_idx === 9) begin

40 / / OF, output max and f i l l new reg with i_data + as much

41 / / of overflow as p o s s i b l e

42 i f (r_mixed + i_data > MAX_SIGNED) begin

43 o_mixed <= MAX_SIGNED; / / output maximum

60

44 / / r_mixed + i_data − MAX_SIGNED <− how much

45 / / current sample overflows the buffer

46 / / OF remainder + curr_overflow too big ,

47 / / reduce OF but add remainder

48 i f ((r_mixed + i_data − MAX_SIGNED) + r_overflow

49 > MAX_SIGNED) begin

50 r_mixed <= MAX_SIGNED;

51 r_overflow <= r_overflow +

52 (r_mixed + i_data − MAX_SIGNED) − MAX_SIGNED;

53 end else begin

54 r_mixed <= r_overflow + (r_mixed + i_data − MAX_SIGNED) ;

55 r_overflow <= 28 ’b0 ; / / a l l of i t went to mixed ;

56 end

57 end else i f (r_mixed + i_data < MIN_SIGNED) begin / / UF

58 o_mixed <= MIN_SIGNED; / / output maximum

59 / / r_mixed + i_data − MIN_SIGNED <− how much current sample

60 / / underflows the buffer

61 / / UF remainder + curr_overflow too small ,

62 / / reduce UF but add remainder

63 i f ((r_mixed + i_data − MIN_SIGNED) + r_overflow

64 < MIN_SIGNED) begin

65 r_mixed <= MIN_SIGNED;

66 r_overflow <= r_overflow +

67 (r_mixed + i_data − MIN_SIGNED) − MIN_SIGNED;

68 end else begin

69 r_mixed <= r_overflow + (r_mixed + i_data − MIN_SIGNED) ;

70 r_overflow <= 28 ’b0 ; / / a l l of i t went to mixed ;

71 end

72 / / in range − t r y off loading the overflow

73 end else begin

74 / / OF s t i l l too big

75 i f (r_mixed + i_data + r_overflow > MAX_SIGNED) begin

76 o_mixed <= MAX_SIGNED;

77 r_mixed <= (r_mixed + i_data + r_overflow) − MAX_SIGNED;

78 / / UF s t i l l too small

79 end else i f (r_mixed + i_data + r_overflow < MIN_SIGNED) begin

80 o_mixed <= MIN_SIGNED;

81 r_mixed <= (r_mixed + i_data + r_overflow) − MIN_SIGNED;

82 / / can get rid o f f of the OF/UF or equal to 0

83 end else begin

84 o_mixed <= r_mixed + i_data + r_overflow ;

85 r_mixed <= 28 ’b0 ;

86 end

87 r_overflow <= 28 ’b0 ; / / OF i s now empty , a l l in reg

88 end

89 end else begin

90 i f (r_mixed + i_data > MAX_SIGNED) begin / / OF

91 r_mixed <= MAX_SIGNED;

92 r_overflow <= r_overflow + (r_mixed + i_data − MAX_SIGNED) ;

93 end else i f (r_mixed + i_data < MIN_SIGNED) begin / / UF

94 r_mixed <= MIN_SIGNED;

95 r_overflow <= r_overflow + (r_mixed + i_data − MIN_SIGNED) ;

96 / / in range − t r y off loading the overflow

97 end else begin

98 / / OF s t i l l too big

99 i f (r_mixed + i_data + r_overflow > MAX_SIGNED) begin

100 r_mixed <= MAX_SIGNED;

101 r_overflow <= r_mixed + i_data + r_overflow − MAX_SIGNED;

102 / / UF s t i l l too small

103 end else i f (r_mixed + i_data + r_overflow < MIN_SIGNED) begin

104 r_mixed <= MIN_SIGNED;

105 r_overflow <= r_mixed + i_data + r_overflow − MIN_SIGNED;

106 / / can get rid o f f of the OF/UF or equal to 0

107 end else begin

108 r_mixed <= r_mixed + i_data + r_overflow ;

109 r_overflow <= 28 ’b0 ;

110 end

111 end

112 o_mixed <= 24 ’b0 ;

113 end

114

115 o_rdy <= (v_idx === 9 ? 1 ’b1 : 1 ’b0) ;

116 v_idx <= (v_idx === 9 ? 0 : v_idx + 1) ;

117 end else begin / / counter not a c t i v e − retain old values

118 v_idx <= v_idx ;

119 r_mixed <= r_mixed ;

120 r_overflow <= r_overflow ;

121 o_mixed <= o_mixed ;

122 o_rdy <= 1 ’b0 ;

123 end

124 end

125

126 endmodule

61

Appendix 2. C and Python code

Listing 7. midi_control.c

1 #include <stdio . h>

2 #include <signal . h>

3 #include <pol l . h>

4 #include <al loca . h>

5 #include <alsa / asoundlib . h>

6

7 s t a t i c snd_seq_t * seq ;

8 s t a t i c snd_seq_addr_t * port ;

9 s t a t i c v o l a t i l e sig_atomic_t stop = 0 ;

10 s t a t i c int fpga_fd = 0 ;

11

12 s t a t i c void f a t a l (const char * msg, . . .)

13 {

14 v a _ l i s t ap ;

15 v a _ s t a r t (ap , msg) ;

16 v f p r i n t f (stderr , msg, ap) ;

17 va_end (ap) ;

18 fputc (’ \n ’ , s tderr) ;

19 e x i t (EXIT_FAILURE) ;

20 }

21

22 s t a t i c void sighandler (int s i g)

23 {

24 stop = 1 ;

25 }

26

27 s t a t i c void check_snd (const char * operation , int err)

28 {

29 i f (err < 0)

30 f a t a l ("Cannot %s − %s " , operation , snd_strerror (err)) ;

31 }

32

33 s t a t i c void mem_check(void * p)

34 {

35 i f (! p)

36 f a t a l ("Out of memory") ;

37 }

38

39 s t a t i c void ini t_seq (void)

40 {

41 int err ;

42 / / open sequencer f o r reading

43 err = snd_seq_open(&seq , " default " , SND_SEQ_OPEN_DUPLEX, 0) ;

44 check_snd ("open sequencer" , err) ;

45

46 err = snd_seq_set_client_name (seq , "keyboard") ;

47 check_snd (" set c l i e n t name" , err) ;

48 }

49

50 s t a t i c void create_port (void)

51 {

52 int err ;

53 err = snd_seq_create_simple_port (seq , "keyboard" ,

54 SND_SEQ_PORT_CAP_WRITE |

55 SND_SEQ_PORT_CAP_SUBS_WRITE,

56 SND_SEQ_PORT_TYPE_MIDI_GENERIC |

57 SND_SEQ_PORT_TYPE_APPLICATION) ;

58 check_snd (" create port " , err) ;

59 }

60

61 s t a t i c void connect_port (void)

62 {

63 int err ;

64 / / 0 because we do not s p e c i f y outgoing port

65 err = snd_seq_connect_from (seq , 0 , port−>cl i e nt , port−>port) ;

66 i f (err < 0)

67 f a t a l ("Cannot connect from port %d:%d − %s " ,

68 port−>cl i e nt , port−>port , snd_strerror (err)) ;

69 }

70

71 s t a t i c unsigned int create_fpga_command (int on ,

72 unsigned char note ,

73 unsigned char v e l o c i t y)

74 {

75 unsigned int command = 0x0 ;

76 command | = note ;

77 command <<= 8 ;

78 command | = v e l o c i t y ;

79 command | = (on << 15) ; / / the order i s important because of the types

62

80 / / p r i n t f ("Command i s : %x \n" , command) ;

81 return command;

82 }

83

84 s t a t i c void write_device (unsigned int * command)

85 {

86 p r i n t f (" Writing a command %x to the /dev/ synthesizer \n" , *command) ;

87 i f (write (fpga_fd , command, s i z e o f (unsigned int)) < s i z e o f (unsigned int))

88 f a t a l ("Could not write command %x to the /dev/ synthesizer \n" ,

89 *command) ;

90 }

91

92 s t a t i c void handle_event (snd_seq_event_t * ev)

93 {

94 unsigned int command = 0x0 ;

95 p r i n t f ("%3d:%−3d " , ev−>source . c l i ent , ev−>source . port) ;

96 switch (ev−>type) {

97 case SND_SEQ_EVENT_NOTEON:

98 i f (ev−>data . note . v e l o c i t y)

99 {

100 p r i n t f ("Note on %2d , note %d , v e l o c i t y %d\n" ,

101 ev−>data . note . channel ,

102 ev−>data . note . note ,

103 ev−>data . note . v e l o c i t y) ;

104 / / write to FPGA

105 command = create_fpga_command (1 ,

106 ev−>data . note . note ,

107 ev−>data . note . v e l o c i t y) ;

108 write_device (&command) ;

109 }

110 else / / never t r i g g e r s ?

111 {

112 p r i n t f ("Note o f f %2d , note %d" ,

113 ev−>data . note . channel ,

114 ev−>data . note . note) ;

115 command = create_fpga_command (0 ,

116 ev−>data . note . note ,

117 0x0) ;

118 write_device (&command) ;

119 }

120 break ;

121 case SND_SEQ_EVENT_NOTEOFF:

122 {

123 p r i n t f ("Note o f f %2d , note %d , v e l o c i t y %d\n" ,

124 ev−>data . note . channel ,

125 ev−>data . note . note ,

126 ev−>data . note . v e l o c i t y) ;

127 command = create_fpga_command (0 ,

128 ev−>data . note . note ,

129 ev−>data . note . v e l o c i t y) ;

130 write_device (&command) ;

131 break ;

132 }

133 case SND_SEQ_EVENT_CONTROLLER:

134 {

135 p r i n t f (" Controller %2d , param %d , value %d\n" ,

136 ev−>data . control . channel ,

137 ev−>data . control . param ,

138 ev−>data . control . value) ;

139 / / Hardcoded param == 108 and value equal 127

140 i f (ev−>data . control . param == 108 && ev−>data . control . value == 127)

141 {

142 command = create_fpga_command (1 , 0 , 0) ;

143 write_device (&command) ;

144 }

145 break ;

146 }

147 default :

148 p r i n t f ("Event type : %d\n" , ev−>type) ;

149 }

150 }

151

152 int main(int argc , char * argv [])

153 {

154 int err ;

155 struct pol l fd * pfds ;

156 int npfds ;

157 i f (argc < 2) / / argv [1] i s the port num to l i s t e n on

158 f a t a l (" Please pass a port to l i s t e n on ! \ n") ;

159

160 / / open FPGA device f i l e

161 fpga_fd = open(" /dev/ synthesizer " , O_WRONLY) ;

162 i f (fpga_fd < 0)

163 f a t a l ("Could not open the FPGA char f i l e ! \ n") ;

164

63

165 / / i n i t i a l i z e the sequencer o b j e c t

166 init_seq () ;

167

168 / / choose appropriate port f o r reading from

169 / / f i r s t l y a l l o c a t i n g buffer f o r returned addr

170 port = r e a l l o c (port , s i z e o f (snd_seq_addr_t)) ;

171 mem_check(port) ;

172

173 err = snd_seq_parse_address (seq , port , argv [1]) ;

174 i f (err < 0)

175 f a t a l (" Inval id port %s − %s " , argv [1] , snd_strerror (err)) ;

176

177 / / c r e a t e the port o b j e c t

178 create_port () ;

179

180 / / connect the port o b j e c t to the sequencer

181 / / in t h i s case we j u s t connect to a dummy output port

182 connect_port () ;

183 / / s e t the non−block mode so that the c l i e n t won ’ t go to s l e e p

184 / / once i t f i l l s the queue of sequencer with events

185 err = snd_seq_nonblock (seq , 1) ;

186 check_snd (" set nonblock mode" , err) ;

187

188 p r i n t f (" Waiting for data at port %d : 0 . " , snd_seq_client_id (seq)) ;

189 p r i n t f (" Press C t r l +C to end . \ n") ;

190 p r i n t f ("Source Event Ch Data\n") ;

191

192 signal (SIGINT , sighandler) ;

193 signal (SIGSTOP , sighandler) ;

194

195 npfds = snd_seq_poll_descriptors_count (seq , POLLIN) ;

196 pfds = al loca (s i z e o f (* pfds) * npfds) ;

197

198 / / sequencer obtains event from fd ’ s associated with i t , we must a l l o c a t e

199 / / space in userspace f o r them and then obtain data which i s then handled

200 / / loop terminates on any er ror or interrupt signal

201 for (; ;)

202 {

203 snd_seq_poll_descriptors (seq , pfds , npfds , POLLIN) ;

204 i f (pol l (pfds , npfds , −1) < 0)

205 break ;

206 do {

207 snd_seq_event_t * event ;

208 err = snd_seq_event_input (seq , &event) ;

209 i f (err < 0)

210 break ;

211 i f (event)

212 handle_event (event) ;

213 } while (err > 0) ;

214 f f l u s h (stdout) ;

215 i f (stop)

216 break ;

217 }

218

219 close (fpga_fd) ;

220 snd_seq_close (seq) ;

221 return 0 ;

222 }

Listing 8. dma_snd.h

1 #include <linux / kernel . h>

2 #include <linux /module . h>

3 #include <linux / f s . h>

4 #include <linux /dma−mapping . h>

5 #include <linux / interrupt . h>

6 #include <linux / slab . h>

7 #include <linux /cdev . h>

8 #include <linux / platform_device . h>

9 #include <linux / of_address . h>

10 #include <linux / uaccess . h>

11 #include <linux / interrupt . h>

12 #include <linux / wait . h>

13 #include <linux / j i f f i e s . h>

14 #include <linux / hrtimer . h>

15 #include <sound/ core . h>

16 #include <sound/ control . h>

17 #include <sound/pcm. h>

18 #include <sound/ i n i t v a l . h>

19 #include <asm/ io . h>

20

21 #define DEV_NAME "dma_snd"

22

23 #define MSGDMA_MAP_SIZE 0x30

64

24 #define DMA_BUF_SIZE (1 << 20)

25 / / 1 MB −> how big the buffer al located by the driver i s

26 / / (max onetime buffer f i l l without reading)

27

28 / * ALSA c o n s t r a i n t s f o r e f f i c i e n t communication

29 *
30 * PCM interrupt i n t e r v a l −> ex : 10ms

31 * Period −> how many frames per one PCM interrupt

32 * Frame −> 1 sample from a l l channels , here :

33 * 1 channel * 1 sample in bytes = 1 * 4 = 4 B

34 * Buffer −> holds some periods in ring−l i k e fashion , PCM reads from i t

35 * /

36

37 #define DMA_TX_PERIOD_MS 10 / / 10ms

38

39 / / assuming IRQ every 10 ms i . e . 100 in a second

40 #define PERIOD_SAMPLES 960

41 #define PERIOD_SIZE_BYTES 4 * PERIOD_SAMPLES

42 #define MAX_PERIODS_IN_BUF 100

43 #define MIN_PERIODS_IN_BUF MAX_PERIODS_IN_BUF

44 / / The s i z e of buffer in kernel , has to be smaller than DMA_BUF_SIZE

45

46 s t a t i c int debug = 0 ;

47 #undef dbg

48 #define dbg (format , arg . . .) do { i f (debug } \

49 pr_info (" : " format " \n" , ##arg) ; } while (0)

50 #define dbg_info (format , arg . . .) do { i f (debug == 2) \

51 pr_info (" : " format " \n" , ##arg) ; } while (0)

52 #define dbg_timer (format , arg . . .) do { i f (debug == 3) \

53 pr_info (" : " format " \n" , ##arg) ; } while (0)

54

55 typedef u32 v o l a t i l e reg_t ;

56

57 #pragma pack (1)

58 struct msgdma_reg {

59 / * CSR port r e g i s t e r s * /

60 reg_t csr_status ;

61 reg_t c s r _ c t r l ;

62 reg_t c s r _ f i l l _ l v l ;

63 reg_t c s r _ r e s p _ f i l l _ l v l ;

64 reg_t csr_seq_num ;

65 reg_t csr_comp_conf1 ;

66 reg_t csr_comp_conf2 ;

67 reg_t csr_comp_info ;

68

69 / * Descriptor port r e g i s t e r s * /

70 reg_t desc_read_addr ;

71 reg_t desc_write_addr ;

72 reg_t desc_len ;

73 reg_t desc_ctr l ;

74

75 / * Response port r e g i s t e r s * /

76 reg_t resp_bytes_transferred ;

77 reg_t resp_term_err ;

78 } ;

79 #pragma pack ()

80

81 / * MSGDMA R e g i s t e r b i t f i e l d s * /

82 enum STATUS {

83 IRQ = (1 << 9) ,

84 STOPPED_EARLY_TERM = (1 << 8) ,

85 STOPPED_ON_ERR = (1 << 7) ,

86 RESETTING = (1 << 6) ,

87 STOPPED = (1 << 5) ,

88 RESP_BUF_FULL = (1 << 4) ,

89 RESP_BUF_EMPTY = (1 << 3) ,

90 DESC_BUF_FULL = (1 << 2) ,

91 DESC_BUF_EMPTY = (1 << 1) ,

92 BUSY = (1 << 0) ,

93 } ;

94

95 #define STATUS_RESET_ALL GENMASK(9 , 0)

96

97 enum CONTROL {

98 STOP_DESC = (1 << 5) ,

99 GLOBAL_IRQ_EN = (1 << 4) ,

100 STOP_ON_EARLY_TERM = (1 << 3) ,

101 STOP_ON_ERR = (1 << 2) ,

102 RESET_DISP = (1 << 1) ,

103 STOP_DISP = (1 << 0) ,

104 } ;

105

106 enum DESC_CTRL {

107 GO = (1 << 31) ,

108 WAIT_WRITE_RESP = (1 << 25) ,

65

109 EARLY_DONE_EN = (1 << 24) ,

110 TX_ERR_IRQ_EN = (1 << 23) ,

111 EARLY_TERM_IRQ_EN = (1 << 15) ,

112 TX_COMPL_IRQ_EN = (1 << 14) ,

113 END_ON_EOP = (1 << 12) ,

114 PARK_WRITES = (1 << 11) ,

115 PARK_READS = (1 << 10) ,

116 GEN_EOP = (1 << 9) ,

117 GEN_SOP = (1 << 8) ,

118 TX_CHANNEL = (1 << 7) ,

119 } ;

120

121 / * Driver private data * /

122 struct msgdma_data {

123 dev_t dev_id ;

124 struct cdev cdev ;

125

126 struct msgdma_reg* msgdma0_reg ;

127 int msgdma0_irq ;

128 void * dma_buf_rd ;

129 dma_addr_t dma_buf_rd_handle ;

130

131 / / to be removed?

132 struct c l a s s * c l ;

133

134 struct snd_card * card ;

135 struct snd_pcm* pcm;

136 const struct dma_snd_pcm_ops* timer_ops ;

137 / * j u s t one substream so keep a l l data in t h i s s t r u c t * /

138 struct mutex cable_lock ;

139 / * f l a g s * /

140 unsigned int running ;

141 / * timer s t u f f * /

142 struct hrtimer hr_timer ;

143

144 struct snd_pcm_substream* substream ;

145 unsigned int buf_pos ; / * posit ion in buffer in bytes * /

146 } ;

147

148 / * SND MINIVOSC Data * /

149 s t a t i c struct snd_pcm_hardware dma_snd_pcm_hw = {

150 . info = (SNDRV_PCM_INFO_MMAP |

151 SNDRV_PCM_INFO_INTERLEAVED |

152 SNDRV_PCM_INFO_BLOCK_TRANSFER |

153 SNDRV_PCM_INFO_MMAP_VALID) ,

154 . formats = SNDRV_PCM_FMTBIT_S32_LE,

155 . rates = SNDRV_PCM_RATE_96000,

156 . rate_min = 96000 ,

157 . rate_max = 96000 ,

158 . channels_min = 1 ,

159 . channels_max = 1 ,

160 . buffer_bytes_max = DMA_BUF_SIZE,

161 . period_bytes_min = PERIOD_SIZE_BYTES ,

162 . period_bytes_max = PERIOD_SIZE_BYTES ,

163 . periods_min = MIN_PERIODS_IN_BUF,

164 . periods_max = MAX_PERIODS_IN_BUF,

165 } ;

166

167 / * Function declarations * /

168 s t a t i c int dma_snd_open(struct inode * node , struct f i l e * f) ;

169 s t a t i c int dma_snd_release (struct inode * node , struct f i l e * f) ;

170 / / s t a t i c s s i z e _ t dma_snd_read (s t r u c t f i l e * f , char __user * ubuf ,

171 s i z e _ t len , l o f f _ t * o f f) ;

172

173 s t a t i c int dma_snd_probe (struct platform_device * pdev) ;

174 s t a t i c int dma_snd_remove(struct platform_device * pdev) ;

175

176 / * ALSA functions * /

177 s t a t i c int dma_snd_pcm_open(struct snd_pcm_substream* ss) ;

178 s t a t i c int dma_snd_pcm_close (struct snd_pcm_substream* ss) ;

179 s t a t i c int dma_snd_hw_params(struct snd_pcm_substream* ss ,

180 struct snd_pcm_hw_params* hw_params) ;

181 s t a t i c int dma_snd_prepare (struct snd_pcm_substream* ss) ;

182 s t a t i c int dma_snd_pcm_trigger (struct snd_pcm_substream* ss , int cmd) ;

183 s t a t i c int dma_snd_pcm_dev_free (struct snd_device * device) ;

184 s t a t i c int dma_snd_pcm_free (struct msgdma_data* chip) ;

185 s t a t i c snd_pcm_uframes_t dma_snd_pcm_pointer (struct snd_pcm_substream* ss) ;

186

187 / * timer functions * /

188 s t a t i c void dma_snd_timer_start (struct msgdma_data* dma_snd_dev) ;

189 s t a t i c void dma_snd_timer_stop (struct msgdma_data* dma_snd_dev) ;

190 s t a t i c void dma_snd_fillbuf (struct msgdma_data* dma_snd_dev) ;

191 s t a t i c enum hrt imer_restart dma_snd_timer_handler (struct hrtimer * timer) ;

192

193 s t a t i c struct snd_pcm_ops dma_snd_pcm_ops = {

66

194 . open = dma_snd_pcm_open ,

195 . close = dma_snd_pcm_close ,

196 . i o c t l = snd_pcm_lib_ioctl ,

197 . hw_params = dma_snd_hw_params ,

198 . prepare = dma_snd_prepare ,

199 . t r i g g e r = dma_snd_pcm_trigger ,

200 . pointer = dma_snd_pcm_pointer ,

201 } ;

202

203 / * s p e c i f i e s what function i s c a l l e d at

204 snd_card_free − used in snd_device_new * /

205 s t a t i c struct snd_device_ops snd_dev_ops = {

206 . dev_free = dma_snd_pcm_dev_free ,

207 } ;

208

209 s t a t i c const struct f i l e _ o p e r a t i o n s dma_snd_fops = {

210 . owner = THIS_MODULE,

211 . open = dma_snd_open ,

212 . release = dma_snd_release ,

213 / / . read = dma_snd_read ,

214 } ;

215

216

217 s t a t i c const struct of_device_id dma_snd_of_match [] = {

218 { . compatible = " a l t r ,msgdma−19.1" } ,

219 { }

220 } ;

221

222 s t a t i c struct platform_driver dma_snd_driver = {

223 . probe = dma_snd_probe ,

224 . remove = dma_snd_remove ,

225 . driver = {

226 .name = DEV_NAME,

227 . of_match_table = dma_snd_of_match ,

228 } ,

229 } ;

Listing 9. dma_snd.c

1 #include "dma_snd . h"

2

3 / * U t i l i t y functions * /

4 s t a t i c void setbit_reg32 (v o l a t i l e void __iomem* reg , u32 mask)

5 {

6 u32 val = ioread32 (reg) ;

7 iowrite32 (val | mask , reg) ;

8 }

9

10 / *
11 s t a t i c void c l e a r b i t _ r e g 3 2 (v o l a t i l e void __iomem* reg , u32 mask)

12 {

13 u32 val = ioread32 (reg) ;

14 iowrite32 ((val & (~mask)) , reg) ;

15 }

16 * /

17

18 s t a t i c void dma_snd_reset (struct msgdma_reg* reg)

19 {

20 dbg ("%s " , __func__) ;

21 / * Clear a l l e x i s t i n g s t a t u s b i t s * /

22 setbit_reg32 (®−>csr_status , STATUS_RESET_ALL) ;

23

24 / * Set the r e s e t t i n g bit , wait unti l deasserted by the device * /

25 setbit_reg32 (®−>c s r _ c t r l , RESET_DISP) ;

26 while (ioread32(®−>csr_statu s) & RESETTING) ;

27

28 dbg ("%s done r e s e t t i n g | status : %d control %d" ,

29 __func__ , reg−>csr_status , reg−>c s r _ c t r l) ;

30 / * Set up t r a n s f e r d e s c r i p t o r s * /

31 setbit_reg32 (®−>c s r _ c t r l ,

32 STOP_ON_EARLY_TERM | STOP_ON_ERR | GLOBAL_IRQ_EN) ;

33

34 dbg ("%s done s e t t i n g control b i t s | s tatus : %d control %d" ,

35 __func__ , reg−>csr_status , reg−>c s r _ c t r l) ;

36 }

37

38 s t a t i c void dma_snd_push_descr (

39 struct msgdma_reg* reg ,

40 dma_addr_t read_addr ,

41 dma_addr_t write_addr ,

42 u32 len ,

43 u32 c t r l)

44 {

45 iowrite32 (read_addr , ®−>desc_read_addr) ;

67

46 iowrite32 (write_addr , ®−>desc_write_addr) ;

47 iowrite32 (len , ®−>desc_len) ;

48 iowrite32 (c t r l | GO, ®−>desc_ctr l) ;

49 }

50

51 / * ALSA functions * /

52 s t a t i c int dma_snd_pcm_open(struct snd_pcm_substream* substr)

53 {

54 struct msgdma_data* dma_snd_dev = substr−>private_data ;

55 struct timespec time ;

56 dbg ("%s " , __func__) ;

57

58 dma_snd_reset (dma_snd_dev−>msgdma0_reg) ;

59 mutex_lock(&dma_snd_dev−>cable_lock) ;

60

61 / * s e t runtime DMA buffer information * /

62 substr−>runtime−>dma_area = dma_snd_dev−>dma_buf_rd ;

63 substr−>runtime−>dma_bytes = DMA_BUF_SIZE;

64 substr−>runtime−>dma_addr = dma_snd_dev−>dma_buf_rd_handle ;

65

66 substr−>runtime−>hw = dma_snd_pcm_hw ;

67

68 dma_snd_dev−>substream = substr ;

69 substr−>runtime−>private_data = dma_snd_dev ;

70

71

72 / * SETUP timer * /

73 hrt imer_init (&dma_snd_dev−>hr_timer , CLOCK_MONOTONIC, HRTIMER_MODE_REL) ;

74 dma_snd_dev−>hr_timer . function = &dma_snd_timer_handler ;

75 dbg (" Resolution : %u secs and %u nsecs " , time . tv_sec , time . tv_nsec) ;

76 mutex_unlock(&dma_snd_dev−>cable_lock) ;

77 return 0 ;

78 }

79

80 s t a t i c int dma_snd_pcm_close (struct snd_pcm_substream* substr)

81 {

82 struct msgdma_data* dma_snd_dev = substr−>private_data ;

83 dbg ("%s " , __func__) ;

84

85 / / even though the mutex w i l l be s e t to null already , lock i t

86 mutex_lock(&dma_snd_dev−>cable_lock) ;

87 substr−>private_data = NULL;

88 mutex_unlock(&dma_snd_dev−>cable_lock) ;

89 return 0 ;

90 }

91

92 s t a t i c int dma_snd_hw_params(struct snd_pcm_substream* substr ,

93 struct snd_pcm_hw_params* hw_params)

94 {

95 dbg ("%s " , __func__) ;

96 return 0 ;

97 }

98

99 s t a t i c int dma_snd_prepare (struct snd_pcm_substream* substr)

100 {

101 struct msgdma_data* dma_snd_dev = substr−>private_data ;

102 dbg ("%s " , __func__) ;

103

104 dma_snd_dev−>buf_pos = 0 ;

105 return 0 ;

106 }

107

108 s t a t i c int dma_snd_pcm_trigger (struct snd_pcm_substream* substr , int cmd)

109 {

110 int r e t = 0 ;

111 struct msgdma_data* dma_snd_dev = substr−>private_data ;

112 dbg ("%s − t r i g g e r %d" , __func__ , cmd) ;

113

114 switch (cmd)

115 {

116 case SNDRV_PCM_TRIGGER_START:

117 / * s t a r t the hw capture * /

118 i f (! dma_snd_dev−>running)

119 {

120 / * START the timer * /

121 dma_snd_timer_start (dma_snd_dev) ;

122 }

123 / / add a bitmask f o r each stream that i s running (in our case j u s t one)

124 dma_snd_dev−>running | = 1 << substr−>stream ;

125 break ;

126 case SNDRV_PCM_TRIGGER_STOP:

127 / * stop the hw capture * /

128 dma_snd_dev−>running &= ~(1 << substr−>stream) ;

129 i f (! dma_snd_dev−>running)

130 / * STOP the timer * /

68

131 dma_snd_timer_stop (dma_snd_dev) ;

132 break ;

133 default :

134 r e t = −EINVAL ;

135 }

136 return r e t ;

137 }

138

139 / / These functions would do any s p e c i a l f r e e i n g on snd_card_free ,

140 / / however no need to do anything since no s p e c i a l a l l o c a t i o n s made

141 s t a t i c int dma_snd_pcm_dev_free (struct snd_device * device)

142 {

143 dbg ("%s " , __func__) ;

144 return dma_snd_pcm_free (device−>device_data) ;

145 }

146

147 s t a t i c int dma_snd_pcm_free (struct msgdma_data* chip)

148 {

149 dbg ("%s " , __func__) ;

150 return 0 ;

151 }

152

153 s t a t i c snd_pcm_uframes_t dma_snd_pcm_pointer (struct snd_pcm_substream* substr)

154 {

155 struct msgdma_data* dma_snd_dev = substr−>private_data ;

156 snd_pcm_uframes_t pos = 0 ;

157 dbg_timer ("%s j i f f i e s %d buf_pos %d" , __func__ ,

158 j i f f i e s _ t o _ m s e c s (j i f f i e s) , dma_snd_dev−>buf_pos) ;

159 pos = bytes_to_frames (substr−>runtime ,

160 dma_snd_dev−>buf_pos * PERIOD_SIZE_BYTES) ;

161 dbg_info (" dma_snd_pcm_pointer %ld " , pos) ;

162 return pos ;

163 }

164

165 / * timer functions * /

166 s t a t i c void dma_snd_timer_start (struct msgdma_data* dma_snd_dev)

167 {

168 dbg_timer ("%s " , __func__) ;

169

170 hrtimer_start (&dma_snd_dev−>hr_timer ,

171 ms_to_ktime (DMA_TX_PERIOD_MS) , HRTIMER_MODE_REL) ;

172 }

173

174 s t a t i c void dma_snd_timer_stop (struct msgdma_data* dma_snd_dev)

175 {

176 dbg_timer ("%s " , __func__) ;

177 hrtimer_cancel(&dma_snd_dev−>hr_timer) ;

178 }

179

180 enum hrt imer_restart dma_snd_timer_handler (struct hrtimer * timer)

181 {

182 struct msgdma_data* dma_snd_dev = container_of (timer ,

183 struct msgdma_data , hr_timer) ;

184 dbg_timer ("%s j i f f i e s %d buf_pos %d" ,

185 __func__ , j i f f i e s _ t o _ m s e c s (j i f f i e s) , dma_snd_dev−>buf_pos) ;

186

187 / * update every DMA_TX_FREQ * /

188 hrtimer_forward_now (timer , ms_to_ktime (DMA_TX_PERIOD_MS)) ;

189

190 dma_snd_fillbuf (dma_snd_dev) ;

191 return HRTIMER_RESTART;

192 }

193

194 s t a t i c void dma_snd_fillbuf (struct msgdma_data* dma_snd_dev)

195 {

196 struct snd_pcm_runtime* runtime = dma_snd_dev−>substream−>runtime ;

197 dma_addr_t read_addr = runtime−>dma_addr

198 + dma_snd_dev−>buf_pos * PERIOD_SIZE_BYTES ;

199

200 i f (! dma_snd_dev−>running)

201 return ;

202

203 dbg_info (" dma_snd_fillbuf buf_pos %d read_addr %x" ,

204 dma_snd_dev−>buf_pos , read_addr) ;

205

206 dma_snd_push_descr (

207 dma_snd_dev−>msgdma0_reg ,

208 0 ,

209 read_addr ,

210 PERIOD_SIZE_BYTES , / / write one whole buffer of 4B samples

211 TX_COMPL_IRQ_EN) ;

212

213 ++dma_snd_dev−>buf_pos ;

214 i f (dma_snd_dev−>buf_pos >= MAX_PERIODS_IN_BUF)

215 dma_snd_dev−>buf_pos = 0 ;

69

216 }

217

218 / * Character f i l e functions * /

219 s t a t i c int dma_snd_open(struct inode * node , struct f i l e * f)

220 {

221 struct msgdma_data* data ;

222 data = container_of (node−>i_cdev , struct msgdma_data , cdev) ;

223 f−>private_data = data ;

224 return 0 ;

225 }

226

227 s t a t i c int dma_snd_release (struct inode * node , struct f i l e * f)

228 {

229 return 0 ;

230 }

231

232 s t a t i c i rqreturn_t dma_snd_irq_handler (int irq , void * dev_id)

233 {

234 struct msgdma_data* data = (struct msgdma_data *) dev_id ;

235 struct msgdma_reg* msgdma0_reg = data−>msgdma0_reg ;

236

237 dbg_timer (" j i f f i e s %u dma device status interrupt %x buf_pos %d" ,

238 j i f f i e s _ t o _ m s e c s (j i f f i e s) ,

239 msgdma0_reg−>csr_status ,

240 data−>buf_pos) ;

241 / * acknowledge corresponding dma and wake up whoever i s waiting * /

242 i f (ioread32(&msgdma0_reg−>csr_statu s) & ir q)

243 {

244 setbit_reg32 (&msgdma0_reg−>csr_status , i rq) ;

245 i f (! data−>running)

246 goto __eexit ;

247

248 snd_pcm_period_elapsed (data−>substream) ;

249 }

250

251 __eexit :

252 return irq_handled ;

253 }

254

255 s t a t i c int dma_snd_register_chrdev (struct msgdma_data* data)

256 {

257 int r e t = 0 ;

258 struct device * dev ;

259

260 r e t = alloc_chrdev_region (&data−>dev_id , 0 , 1 , dev_name) ;

261 i f (r e t < 0)

262 {

263 pr_err (" character device region al lo cat i on f a i l e d ") ;

264 goto __error ;

265 }

266 / / c r e a t e a c l a s s in s y s f s to be mounted by udev

267 i f (i s _ e r r (data−>c l = class_create (this_module , "chrdev")))

268 {

269 pr_err (" character c l a s s creation f a i l e d ") ;

270 goto __chrdev_add_err ;

271 }

272 i f (i s _ e r r (dev = device_create (data−>cl , null , data−>dev_id ,

273 null , "dma_snd")))

274 {

275 pr_err (" character device creation f a i l e d ") ;

276 class_destroy (data−>c l) ;

277 goto __chrdev_add_err ;

278 }

279 / / actual r e g i s t e r i n g of the device

280 cdev_init (&data−>cdev , &dma_snd_fops) ;

281 r e t = cdev_add(&data−>cdev , data−>dev_id , 1) ;

282 i f (r e t < 0)

283 {

284 pr_err (" character device i n i t i a l i z a t i o n f a i l e d ") ;

285 device_destroy (data−>cl , data−>dev_id) ;

286 class_destroy (data−>c l) ;

287 goto __chrdev_add_err ;

288 }

289

290 return 0 ;

291 __chrdev_add_err :

292 unregister_chrdev_region (data−>dev_id , 1) ;

293 __error :

294 return r e t ;

295 }

296

297 s t a t i c void dma_snd_unregister_chrdev (struct msgdma_data* data)

298 {

299 cdev_del(&data−>cdev) ;

300 device_destroy (data−>cl , data−>dev_id) ;

70

301 class_destroy (data−>c l) ;

302 unregister_chrdev_region (data−>dev_id , 1) ;

303 }

304

305 / * main functions * /

306 s t a t i c int dma_snd_probe (struct platform_device * pdev)

307 {

308 struct msgdma_data* data ;

309 struct resource * res ;

310 struct resource * region ;

311 struct device * dev ;

312

313 struct snd_card * card ;

314 int nr_subdevs = 1 ; / / how many capture substreams (by default j u s t 1)

315 struct snd_pcm* pcm;

316 int r e t = 0 ;

317

318 dbg ("dma_snd probe entered ") ;

319

320 dev = &pdev−>dev ;

321

322 / * alsa part * /

323 r e t = snd_card_new (dev , 3 , " fpga_synth " ,

324 this_module ,

325 s i z e o f (struct msgdma_data) , &card) ;

326 i f (r e t < 0)

327 goto __nodev ;

328

329 data = card−>private_data ;

330 data−>card = card ;

331 / / must have mutex_init here , e l s e crash on mutex_lock

332 mutex_init(&data−>cable_lock) ;

333

334 dbg ("dma_snd data %p dev_id %d" , data , pdev−>id) ;

335

336 strcpy (card−>driver , "dma_snd_driver") ;

337 s p r i n t f (card−>shortname , " fpga synthesizer %s " , dev_name) ;

338 strcpy (card−>longname , card−>shortname) ;

339

340 dbg ("dma_snd card names copying success ") ;

341 r e t = snd_device_new (card , sndrv_dev_lowlevel , data , &snd_dev_ops) ;

342 i f (r e t < 0)

343 goto __nodev ;

344 / * 0 playback , 1 capture substreams * /

345 r e t = snd_pcm_new(card , card−>driver , 0 , 0 , nr_subdevs , &pcm) ;

346 i f (r e t < 0)

347 goto __nodev ;

348

349 snd_pcm_set_ops (pcm, sndrv_pcm_stream_capture , &dma_snd_pcm_ops) ;

350 / / i t should be the dev / card s t r u c t (the one containing snd_card * card)

351 / / −> t h i s w i l l not end up in substream−>private_data

352 pcm−>private_data = data ;

353 pcm−>i n f o _ f l a g s = 0 ;

354 strcpy (pcm−>name, card−>shortname) ;

355 dbg ("dma_snd snd_pcm_set_ops success ") ;

356

357 r e t = snd_card_register (card) ;

358 i f (r e t < 0)

359 goto __nodev ;

360

361 / * dma part * /

362

363 platform_set_drvdata (pdev , (void *) data) ;

364

365 data−>dma_buf_rd = dma_alloc_coherent (

366 dev ,

367 dma_buf_size ,

368 &data−>dma_buf_rd_handle ,

369 gfp_kernel) ;

370

371 i f (data−>dma_buf_rd == null)

372 {

373 r e t = −enomem;

374 goto _ _ f a i l ;

375 }

376

377 / * remap io region of the device * /

378 / * obtain the resource s t r u c t u r e containing

379 s t a r t , end and io memory s i z e * /

380 res = platform_get_resource (pdev , ioresource_mem , 0) ;

381 i f (res == null)

382 {

383 dev_err(&pdev−>dev , " io region resource not defined ") ;

384 return −enodev ;

385 }

71

386

387 / * request the region from the memory to guarantee e x c l u s i v e n e s s * /

388 region = devm_request_mem_region (

389 dev ,

390 res−>s t a r t ,

391 resource_size (res) ,

392 dev_name(dev)) ;

393 i f (region == null)

394 {

395 dev_err (dev , "mem region not requested ") ;

396 return −ebusy ;

397 }

398

399 / * map the region to memory * /

400 data−>msgdma0_reg = devm_ioremap_nocache (dev ,

401 region−>s t a r t , msgdma_map_size) ;

402 i f (data−>msgdma0_reg <= 0)

403 {

404 dev_err (dev , "could not remap io region ") ;

405 return −e f a u l t ;

406 }

407

408 / * i n i t i a l i z e the device i t s e l f * /

409 dma_snd_reset (data−>msgdma0_reg) ;

410

411 / * get device ’ s i rq number(s) * /

412 data−>msgdma0_irq = platform_get_irq (pdev , 0) ;

413 i f (data−>msgdma0_irq < 0)

414 {

415 pr_err ("could not get i rq number") ;

416 return −enxio ;

417 }

418

419 r e t = devm_request_irq (dev , data−>msgdma0_irq ,

420 dma_snd_irq_handler , irqf_shared ,

421 "msgdma0" , data) ;

422 i f (r e t < 0)

423 {

424 dev_err (dev , "could not request i r q %d" , data−>msgdma0_irq) ;

425 return r e t ;

426 }

427

428 r e t = dma_snd_register_chrdev (data) ;

429 i f (r e t < 0)

430 return r e t ;

431

432 dbg ("dma probe e x i t ") ;

433 return 0 ;

434

435

436 __nodev :

437 dbg ("__nodev reached ! ! ") ;

438 snd_card_free (card) ; / / t h i s w i l l c a l l . dev_free r e g i s t e r e d func

439

440 _ _ f a i l :

441 dbg (" _ _ f a i l reached ! ! ") ;

442 dma_snd_remove(pdev) ;

443 return r e t ;

444 }

445

446 s t a t i c int dma_snd_remove(struct platform_device * pdev)

447 {

448 struct msgdma_data* data = (struct msgdma_data *) platform_get_drvdata (pdev) ;

449

450 snd_card_free (data−>card) ;

451

452 dma_snd_unregister_chrdev (data) ;

453 dma_free_coherent (

454 &pdev−>dev ,

455 dma_buf_size ,

456 data−>dma_buf_rd ,

457 data−>dma_buf_rd_handle) ;

458 return 0 ;

459 }

460

461 s t a t i c int _ _ i n i t dma_snd_init (void)

462 {

463 return platform_driver_register (&dma_snd_driver) ;

464 }

465

466 s t a t i c void _ _ e x i t dma_snd_exit (void)

467 {

468 platform_driver_unregister (&dma_snd_driver) ;

469 }

470

72

471 s u b s y s _ i n i t c a l l (dma_snd_init) ;

472 module_exit (dma_snd_exit) ;

473

474 MODULE_LICENSE("GPL") ;

475 MODULE_AUTHOR("Jakub Duchniewicz , j . duchniewicz@gmail .com") ;

476 MODULE_DESCRIPTION("DMA receiver driver acting as ALSA Hardware Source") ;

477 MODULE_VERSION(" 1.0 ") ;

Listing 10. generate_svf_coeff.py

1 import argparse

2 import math

3

4 class Generator :

5 def _ _ i n i t _ _ (s e l f , args) :

6 s e l f . args = args

7 s e l f . sampling_speed = int (s e l f . args . s)

8 s e l f . k = 2

9

10

11 def generate_coeff (s e l f) :

12 out = open(s e l f . args . d , ’w’)

13 for i in range (128) :

14 print (i)

15 freq = 2 * * ((i − 69) /12) * 440

16 print (freq)

17 curve_val = ((math . exp ((2 . 5 * i) /127) − 1) / (math . exp (2 . 5) − 1))

18 print (curve_val)

19 cu tof f_freq = curve_val * 32*10**3 # r e s c a l e to 1−32KHz

20 print (cutof f_freq)

21 g = math . tan ((cu tof f_freq / (s e l f . sampling_speed * 10**3)) * math . pi)

22 print (g)

23 m = 1 + g * (g+ s e l f . k)

24 a1 = 1/m

25 a2 = g*a1

26 a3 = g*a2

27 print ("m: { } , a1 : { } , a2 : { } , a3 : { } " . format (m, a1 , a2 , a3))

28 # now convert to Q2.37 format f o r precis ion

29 a1_q = int (a1 * 2**37)

30 a2_q = int (a2 * 2**37)

31 a3_q = int (a3 * 2**37)

32

33 i f s e l f . args . q i s not False :

34 midi_hex = ’ { 0 : 0 { 1 } x } ’ . format (i , 2)

35 a1_bin = ’ { 0 : 0 { 1 } b} ’ . format (a1_q , 40)

36 a2_bin = ’ { 0 : 0 { 1 } b} ’ . format (a2_q , 40)

37 a3_bin = ’ { 0 : 0 { 1 } b} ’ . format (a3_q , 40)

38

39 l i n e = " 7 ’h { } \ t : \ t begin \n" . format (midi_hex)

40 l i n e += " \ to_a1 <= 40 ’b { } ; \ n" . format (a1_bin)

41 l i n e += " \ to_a2 <= 40 ’b { } ; \ n" . format (a2_bin)

42 l i n e += " \ to_a3 <= 40 ’b { } ; \ n" . format (a3_bin) # l a t e r add spacing between n and m values ’ _ ’

43 l i n e += " \tend\n"

44 print (l i n e)

45 out . write (l i n e)

46 else :

47 print (" in Q2.32 a1 : { } , a2 : { } , a3 : { } " . format (a1_q , a2_q , a3_q))

48

49

50 def main () :

51 parser = argparse . ArgumentParser ()

52 parser . add_argument (’−s ’ , help= ’ sampling speed in kHz ’ , required=True)

53 parser . add_argument (’−q ’ , help= ’ generate v e r i l o g ready l i n e s of sequential l o g i c ’ , action=" store_true ")

54 parser . add_argument (’−d ’ , help= ’ output f i l e ’ , required=True)

55 args = parser . parse_args ()

56 gen = Generator (args)

57 gen . generate_coeff ()

58

59 i f __name__ == "__main__" :

60 main ()

Listing 11. generate_wave.py

1 import argparse

2 import math

3

4 # dependencies :

5 # number of samples cause the output index width

6 # output b i t s width cause the sine wave values

7 class Generator :

8 def _ _ i n i t _ _ (s e l f , args) :

9 s e l f . args = args

73

10 s e l f . output_width = int (s e l f . args . r)

11 s e l f . output_max_size = 2 ** int (s e l f . args . r)

12 s e l f . output_width_hex_len = int (s e l f . args . r) // 4 # 4 b i t s i s 1 hex value

13 s e l f . t a b l e _ s i z e = int (s e l f . args . n)

14 s e l f . input_width = int (math . log2 (s e l f . t a b l e _ s i z e))

15 s e l f . table_size_hex_len = int (math . c e i l (math . log2 (s e l f . t a b l e _ s i z e) / 4))

16

17 def generate (s e l f) :

18 i f ’ sine ’ in s e l f . args . t :

19 s e l f . generate_sine ()

20 e l i f ’ t r i a n g l e ’ or ’ sawtooth ’ in s e l f . args . t :

21 s e l f . generate_ramp ()

22

23 def generate_sine (s e l f) :

24 out = open(s e l f . args . d , ’w’)

25 i f s e l f . args . q i s not False :

26 s e l f . generate_qnotation_sine (out)

27 else :

28 s e l f . generate_quarter_sine (out)

29

30 # generate a quarter of a t r i a n g l e OR

31 # generate the p o s i t i v e half of the sawtooth

32 def generate_ramp (s e l f) :

33 out = open(s e l f . args . d , ’w’)

34 s e l f . output_width −= 1

35 for sample in range (s e l f . t a b l e _ s i z e) :

36 val = int (sample / s e l f . t a b l e _ s i z e * 2** s e l f . output_width)

37 val_bin = ’ { 0 : 0 { 1 } b} ’ . format (val , s e l f . output_width) # format s p e c i f i e r

38

39 i f s e l f . args . g i s not False :

40 idx_hex = ’ { 0 : 0 { 1 } x } ’ . format (sample , s e l f . table_size_hex_len)

41

42 lhs = " { 0 } ’ h{ 1 } " . format (s e l f . input_width , idx_hex)

43 rhs = " \ t : \ to_val <= { 0 } ’ b0 { 1 } ; \ n" . format (s e l f . output_width + 1 , val_bin) #leading zero because i t i s p o s i t i v e only

44

45 lhs += rhs

46 out . write (lhs)

47 else :

48 out . write (s t r (val) + ’ \n ’)

49

50 # always generate quarter of a wave f o r Q format

51 def generate_qnotation_sine (s e l f , out) :

52 s e l f . output_width −= 1

53 for sample in range (s e l f . t a b l e _ s i z e) :

54 rad = ((2 * sample + 1) / (2 * s e l f . t a b l e _ s i z e * 4)) * 2 * math . pi # according to zipCPU , take quarter of f u l l wave

55 sine = math . sin (rad)

56 qnotation_sine = int (2 * * (s e l f . output_width) * sine)

57 sine_bin = ’ { 0 : 0 { 1 } b} ’ . format (qnotation_sine , s e l f . output_width) # format s p e c i f i e r

58

59 i f s e l f . args . g i s not False :

60 idx_hex = ’ { 0 : 0 { 1 } x } ’ . format (sample , s e l f . table_size_hex_len)

61

62 lhs = " { 0 } ’ h{ 1 } " . format (s e l f . input_width , idx_hex)

63 rhs = " \ t : \ to_val <= { 0 } ’ b0 { 1 } ; \ n" . format (s e l f . output_width + 1 , sine_bin) #leading zero because i t i s j u s t a quarter

64

65 lhs += rhs

66 out . write (lhs)

67 else :

68 out . write (s t r (sine) + ’ \n ’)

69

70

71 def generate_quarter_sine (s e l f , out) :

72 s e l f . t a b l e _ s i z e >>= 2

73 s e l f . output_width −= 1

74 for sample in range (s e l f . t a b l e _ s i z e) :

75 rad = ((2 * sample + 1) / (2 * s e l f . t a b l e _ s i z e * 4)) * 2 * math . pi # according to zipCPU , take quarter of f u l l wave

76 sine = math . sin (rad)

77 sine_bin = ’ { 0 : 0 { 1 } b} ’ . format (int (s e l f . output_max_size * sine) , s e l f . output_width) # format s p e c i f i e r

78

79 i f s e l f . args . g i s not False :

80 idx_hex = ’ { 0 : 0 { 1 } x } ’ . format (sample , s e l f . table_size_hex_len)

81

82 lhs = " { 0 } ’ h{ 1 } " . format (s e l f . input_width , idx_hex)

83 rhs = " \ t : \ to_val <= { 0 } ’ b0 { 1 } ; \ n" . format (s e l f . output_width + 1 , sine_hex)

84

85 lhs += rhs

86 out . write (lhs)

87 else :

88 out . write (s t r (sine) + ’ \n ’)

89

90 def main () :

91 parser = argparse . ArgumentParser ()

92 parser . add_argument (’−t ’ , choices =[’ sine ’ , ’ t r i a n g l e ’ , ’ sawtooth ’] , help= ’ type of wave to generate ’ , required=True)

93 parser . add_argument (’−n ’ , choices =[’ 512 ’ , ’ 1024 ’ , ’ 2048 ’ , ’ 4096 ’ , ’ 8192 ’ , ’ 16384 ’ , ’ 32768 ’] , help= ’number of samples to be generated ’ , required=True)

94 parser . add_argument (’−g ’ , help= ’ generate v e r i l o g ready l i n e s of sequential l o g i c ’ , action=" store_true ")

74

95 parser . add_argument (’−q ’ , help= ’ generate table in Q0. <n> notation ’ , action=" store_true ")

96 parser . add_argument (’−d ’ , help= ’ output f i l e ’ , required=True)

97 parser . add_argument (’−r ’ , default= ’ 16 ’ , help= ’ output b i t s width ’)

98 args = parser . parse_args ()

99 gen = Generator (args)

100 gen . generate ()

101

102 i f __name__ == "__main__" :

103 main ()

Listing 12. generate_tuning_word.py

1 import argparse

2 import math

3

4 class Generator :

5 def _ _ i n i t _ _ (s e l f , args) :

6 s e l f . args = args

7 s e l f . tw_bits = int (args . n)

8 s e l f . sampling_speed = f l o a t (s e l f . args . s)

9

10 def generate_tw (s e l f) :

11 out = open(s e l f . args . d , ’w’)

12 for i in range (128) :

13 print ("number " + s t r (i))

14 freq = 2 * * ((i − 69) /12) * 440

15 print (" freq " + s t r (freq))

16 tw = int (freq * 2 ** s e l f . tw_bits / (s e l f . sampling_speed * 10 ** 3))

17 print ("tw " + s t r (tw))

18

19 i f s e l f . args . q i s not False :

20 midi_hex = ’ { 0 : 0 { 1 } x } ’ . format (i , 2)

21 tw_bin = ’ { 0 : 0 { 1 } b} ’ . format (tw , s e l f . tw_bits)

22 l i n e = " 7 ’h{ 0 } \ t : \ to_tw <= { 1 } ’ b { 2 } ; \ n" . format (midi_hex , s e l f . tw_bits , tw_bin)

23 out . write (l i n e)

24 else :

25 out . write (s t r (tw))

26

27 def main () :

28 parser = argparse . ArgumentParser ()

29 parser . add_argument (’−n ’ , help= ’number of b i t s used for sine calculat ion ’ , required=True)

30 parser . add_argument (’−s ’ , help= ’ sampling speed in kHz ’ , required=True)

31 parser . add_argument (’−q ’ , help= ’ generate v e r i l o g ready l i n e s of sequential l o g i c ’ , action=" store_true ")

32 parser . add_argument (’−d ’ , help= ’ output f i l e ’ , required=True)

33 args = parser . parse_args ()

34 gen = Generator (args)

35 gen . generate_tw ()

36

37 i f __name__ == "__main__" :

38 main ()

75

	Introduction
	Scope of Thesis
	Thesis Layout
	Overview of existing solutions
	Synthesis techniques
	DMA techniques
	Writing ALSA driver

	Background
	Origins of synthesis
	Synthesis approaches
	Subtractive synthesis
	Additive synthesis
	Other approaches

	MIDI protocol

	Hardware overview and System Design
	Hardware overview
	Requirements Analysis
	System Design

	Hardware Design
	Sine wave generation
	Square wave generation
	Sawtooth wave generation
	Triangle wave generation
	State Variable Filter
	Sample accumulator

	Software Design
	Board Setup
	MIDI receiving application
	DMA - ALSA synthesizer driver
	Obtaining the data

	Testing
	Verilog Testbenches
	Oscilloscope testing
	System Testing
	Examples

	Debugging
	Timing and Delays
	Software delays
	Hardware delays

	Results
	Resource Utilization

	Conclusions
	Future Work
	Alternative solutions

	Acknowledgements
	References
	List of Symbols and Abbreviations
	List of Figures
	List of Appendices

